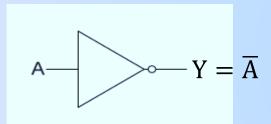
بسم الله الرحمن الرحيم

جامعة الموصل - كلية علوم الحاسوب والرياضيات قسم الامن السيبراني

CIRCUTE DESIGN

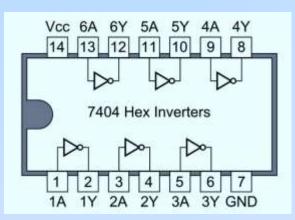
المحاضرة الثالثة Logic Gates


Sura Sabah I. Ahmed

Not Gate

The Inverter:

- The Inverter (NOT) circuit performs the operation called "Inversion" or "Complementation".
- The Inverter changes one logic level to the opposite, i.e. it changes a "1" to "0" and a "0" to "1".

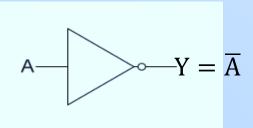

The Logic symbol of NOT Gate is:

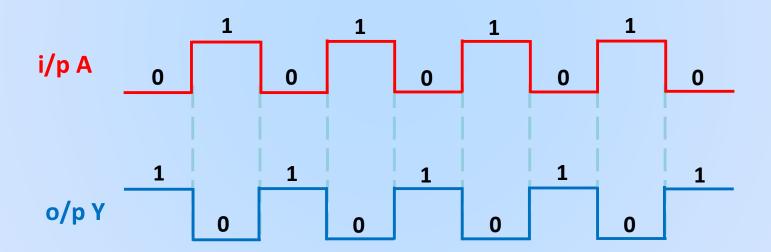
The output equation : $Y = \overline{A}$

$$A \underline{\hspace{1cm} 1 \hspace{1cm}} \bigcirc \underline{Y} = \overline{A}$$

The pin diagram of the chip (IC 7404)

The truth table NOT gate:

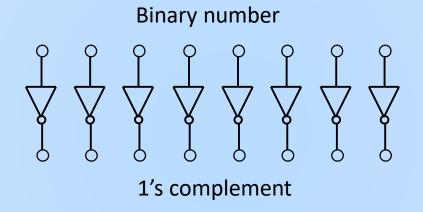

Α	Υ	
0	1	
1	0	

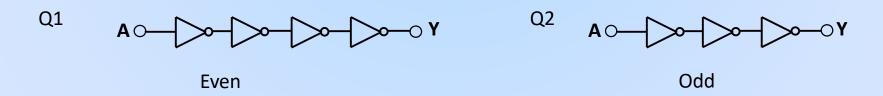

NOT Gate

Example:

A waveform (A) shown below is applied to an inverter, determine the output waveform

(Y) corresponding to the input (A)?

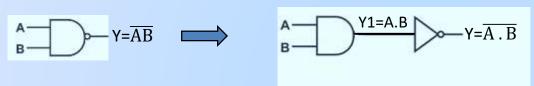


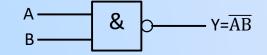

NOT Gate

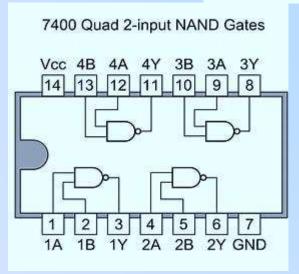
Application Example:

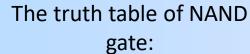
- ➤ The figure shown below is a circuit for producing the 1's complement of an 8 bit binary number.
- The bits of the binary number are applied to the inverter inputs and the 1's complement of an 8 bit binary number appear on the o/p.

Q) What is the output y for the following circuits?

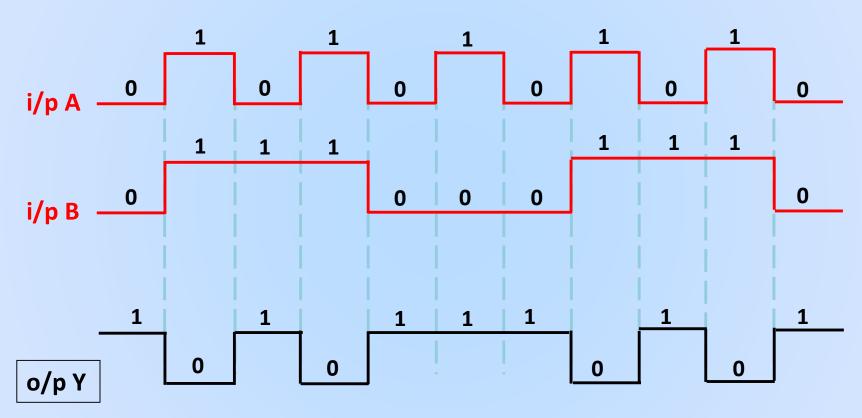



The NAND gate (AND + NOT):

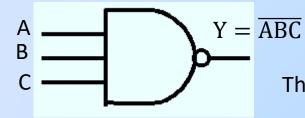

The NAND gate is a popular logic element because it can be used as a universal gate.


The name "NAND" is a contraction of NOT-AND and implies an AND function with a complemented (Inverse) output.

The symbol for 2-in NAND gate

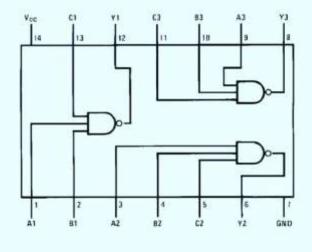


INPUTS		OUTPUTS		
Α	В	Y1	Υ	
0	0	0	1	
0	1	0	1	
1	0	0	1	
1	1	1	0	

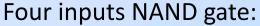

The NAND gate produces a <u>LOW</u> o/p only when the all inputs are <u>HIGH</u>, and the output is HIGH when any of the inputs is <u>LOW</u>.

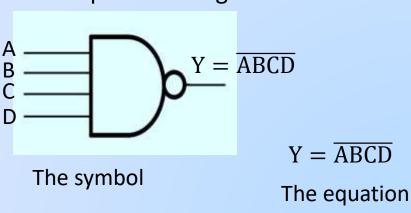
Pulsed operation:

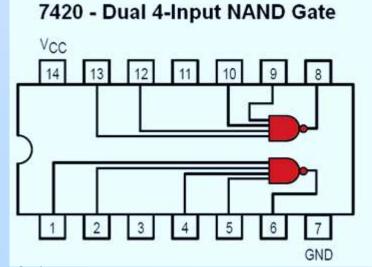
Example: If the two waveforms (A & B) shown below are applied to the NAND gate inputs. Determine the resulting output waveform?



3- inputs NAND gate:


The o/p equation: Y $= \overline{ABC}$


74ALS10 Triple 3-Input NAND Gate LOGIC SYMBOL

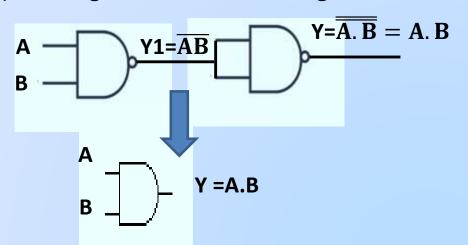


The truth table of three inputs NAND gate:

INPUTS			OUTPUT
Α	В	С	$Y = \overline{ABC}$
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

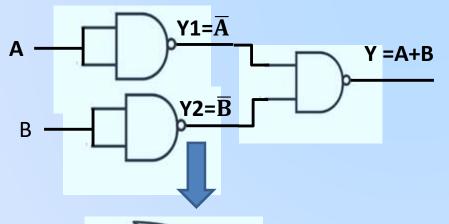
H.W:

Write the truth table and the output equation of the 4-inputsn NAND gate?


Universal properties of NAND gate:

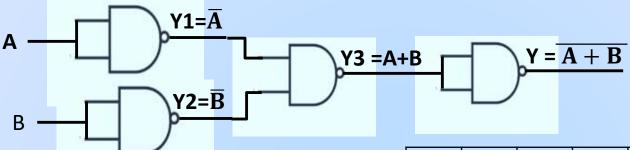
1) NAND gate used as an Inverter:-

$$A - \overline{A} = \overline{A}$$

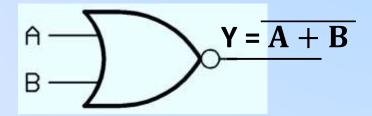

$$A - \overline{A} = \overline{A}$$

2) NAND gate used as an AND gate:-

Α	В	Y1=AB	Y=A.B
0	0	1	0
0	1	1	0
1	0	1	0
1	1	0	1


3) NAND gate used as an OR gate:-

Α	В	Y1	Y2	Y=A+B
0	0	1	1	0
0	1	1	0	1
1	0	0	1	1
1	1	0	0	1


$$Y=A+B=\overline{\overline{A+B}}=\overline{\overline{A}.\overline{B}}=A+B$$

4) NAND gate used as an NOR gate:-

Α	В	Y1	Y2	Y3=A+B	$Y = \overline{A + B}$
0	0	1	1	0	1
0	1	1	0	1	0
1	0	0	1	1	0
1	1	0	0	1	0

Thank you