Cryptography RSA

RSA Example - Key Setup

- 1. Select primes: p=17 & q=11
- 2. Compute $n = pq = 17 \times 11 = 187$
- 3. Compute $\emptyset(n) = (p-1)(q-1) = 16 \times 10 = 160$
- 4. **Select** e: gcd(e, 160) = 1; **choose** e = 7
- 5. Determine d: de=1 mod 160 and d < 160 Value is d=23 since 23x7=161= 10x160+1</p>
- 6. Publish public key PU={7,187}
- 7. Keep secret private key PR={23,187}

RSA Example - En/Decryption

- sample RSA encryption/decryption is:
- > given message M = 88 (nb. 88<187)
- > encryption:

```
C = 88^7 \mod 187 = 11
```

> decryption:

```
M = 11^{23} \mod 187 = 88
```

Exponentiation

- can use the Square and Multiply Algorithm
- > a fast, efficient algorithm for exponentiation
- concept is based on repeatedly squaring base
- and multiplying in the ones that are needed to compute the result
- look at binary representation of exponent
- > only takes O(log₂ n) multiples for number n
 - eg. $7^5 = 7^4 \cdot 7^1 = 3 \cdot 7 = 10 \mod 11$
 - eg. $3^{129} = 3^{128} \cdot 3^1 = 5 \cdot 3 = 4 \mod 11$

Exponentiation

```
c = 0; f = 1
for i = k downto 0
     do c = 2 \times c
         f = (f \times f) \mod n
     if b<sub>i</sub> == 1 then
         c = c + 1
         f = (f \times a) \mod n
return f
```

Efficient Encryption

- > encryption uses exponentiation to power e
- > hence if e small, this will be faster
 - often choose $e=65537 (2^{16}-1)$
 - also see choices of e=3 or e=17
- but if e too small (eg e=3) can attack
 - using Chinese remainder theorem & 3 messages with different modulii
- if e fixed must ensure gcd(e,ø(n))=1
 - ie reject any p or q not relatively prime to e

Efficient Decryption

- decryption uses exponentiation to power d
 - this is likely large, insecure if not
- can use the Chinese Remainder Theorem (CRT) to compute mod p & q separately. then combine to get desired answer
 - approx 4 times faster than doing directly
- only owner of private key who knows values of p & q can use this technique

RSA Key Generation

- users of RSA must:
 - determine two primes at random p, q
 - select either e or d and compute the other
- primes p, q must not be easily derived from modulus n=p.q
 - means must be sufficiently large
 - typically guess and use probabilistic test
- exponents e, d are inverses, so use Inverse algorithm to compute the other

RSA Security

- > possible approaches to attacking RSA are:
 - brute force key search (infeasible given size of numbers)
 - mathematical attacks (based on difficulty of computing ø(n), by factoring modulus n)
 - timing attacks (on running of decryption)
 - chosen ciphertext attacks (given properties of RSA)

Factoring Problem

- mathematical approach takes 3 forms:
 - factor n=p.q, hence compute ø(n) and then d
 - determine ø (n) directly and compute d
 - find d directly
- currently believe all equivalent to factoring
 - have seen slow improvements over the years
 - as of May-05 best is 200 decimal digits (663) bit with LS
 - biggest improvement comes from improved algorithm
 - cf QS to GHFS to LS
 - currently assume 1024-2048 bit RSA is secure
 - ensure p, q of similar size and matching other constraints

Timing Attacks

- developed by Paul Kocher in mid-1990's
- exploit timing variations in operations
 - eg. multiplying by small vs large number
 - or IF's varying which instructions executed
- infer operand size based on time taken
- RSA exploits time taken in exponentiation
- countermeasures
 - use constant exponentiation time
 - add random delays
 - blind values used in calculations

Chosen Ciphertext Attacks

- RSA is vulnerable to a Chosen Ciphertext Attack (CCA)
- attackers chooses ciphertexts & gets decrypted plaintext back
- choose ciphertext to exploit properties of RSA to provide info to help cryptanalysis
- can counter with random pad of plaintext
- or use Optimal Asymmetric Encryption Padding (OASP)

Summary

- > have considered:
 - principles of public-key cryptography
 - RSA algorithm, implementation, security