Assistant prof. Dr. Muthanna Subhi Sulaiman \University of Mosul.

Stochastic Processes (1)

Lecture 4: P.G.F. of Sum of Fixed Number of r.v.'s

(1-4) P.G.F. of Sum of Fixed Number of Discrete r.v.'s:

Let X and Y be two independent non-negative integer valued random variables with probability distribution given by:

$$P\{X = k\} = a_k$$
 , $P\{Y = j\} = b_j$.

The sum Z = X + Y is r.v., then the event [Z = r] can be happen in the following mutually exclusive way with corresponding probability:

$$(X=0 \ \ and \ \ Y=r)$$
 with prob. a_ob_r $(X=1 \ \ and \ \ Y=r-1)$ with prob. a_1b_{r-1}

$$(X = 1 \ and \ Y = r - 1)$$
 with prob. $a_1 b_{r-1}$

$$(X = 2 \quad and \quad Y = r - 2)$$
 with prob. a_2b_{r-2}

$$(X = r \quad and \quad Y = 0)$$
 with prob. $a_r b_0$

Hence the distribution of Z is given by :

$$C_r = P_r\{Z = r\} = a_0b_r + a_1b_{r-1} + a_2b_{r-2} + \dots + a_rb_0 \dots 1.8$$

$$C_r = \sum_{i=0}^r a_i \ b_{r-i}$$
 ... 1.9

Stochastic Processes (1) \setminus Statistics & Informatics dep. \setminus Fourth class. (2023-2024)

Assistant prof. Dr. Muthanna Subhi Sulaiman \University of Mosul.

Then the new sequence $\{C_r\}$ with results from a combination of the two sequences $\{a_k\}$ and $\{b_j\}$ is called the convolution of $\{a_k\}$ and $\{b_j\}$, and is denoted by:

$$\{C_r\} = \{a_k\} * \{b_i\}$$

Let $P_X(S)$, $P_Y(S)$ and $P_Z(S)$ be the p.g.f.'s of X,Y and Z respectively, then from (1.9) it follows that:

$$P_Z(S) = E(S^{X+Y}) = E(S^X S^Y)$$

= $E(S^X) . E(S^Y) = P_X(S) . P_Y(S)$... 1.10

This is because the independence of X and Y.

Where:

$$P_{Z}(S) = \sum_{r=0}^{\infty} C_{r}S^{r}$$

$$= \sum_{r=0}^{\infty} \sum_{i=0}^{r} a_{i}b_{r-i}S^{r}$$

$$= \sum_{r=0}^{\infty} \sum_{i=0}^{r} a_{i}S^{i} \cdot b_{r-i}S^{r-i}$$

$$\left(S^{r} = S^{r-i+i} = S^{i}S^{r-i}\right)$$

$$= \sum_{i=0}^{\infty} a_{i}S^{i} \sum_{r=0}^{\infty} b_{r-i}S^{r-i}$$
(because the independence of X and Y)
$$= P_{Y}(S) \cdot P_{Y}(S)$$

Stochastic Processes (1) \ Statistics & Informatics dep.\Fourth class. (2023-2024)

Assistant prof. Dr. Muthanna Subhi Sulaiman \University of Mosul.

Theorem (1):

The p.g.f. of the sum two independent random variables X and Y is the product to p.g.f. of X and Y, i.e.:

If: Z = X + Y, then:

$$P_Z(S) = P_X(S).P_Y(S)$$
 ... 1.11

The result with be also hold in the case of the sum (S_n) of (n)non-negtive independent integer valued r.v.'s X_1, X_2, \ldots, X_n , i.e.:

If:
$$S_n = X_1 + X_2 + \dots + X_n$$
, then the p.g.f. of S_n is:

$$P_{S_n}(S) = P_{X_1}(S) ... P_{X_2}(S) ... P_{X_n}(S)$$

$$= \prod_{i=1}^n P_{X_i}(S) ... 1.12$$
Theorem (2):

The sum $S_n = X_1 + X_2 + \cdots + X_n$ of fixed number (n) of independently and identically distribution (i.i.d.) r.v.'s X_i has p.g.f. as:

$$P_{S_n}(S) = P_{X_1}(S) P_{X_2}(S) \dots P_{X_n}(S)$$

 $P_{S_n}(S) = [P_X(S)]^n \dots 1.13$

Stochastic Processes (1) \ Statistics & Informatics dep.\Fourth class. (2023-2024)

Assistant prof. Dr. Muthanna Subhi Sulaiman \University of Mosul.

Example (1.9):

Let X_1 and X_2 be two independent Poisson variate with means (parameters) λ_1 and λ_2 respectively. Find the p.g.f. of the sum: $Z = X_1 + X_2$ and the mean and variance of Z.

Solution:

We know that the p.g.f. of X_i is:

$$\begin{split} P_{X_i}(S) &= \sum_{k=0}^\infty p_k S^k \ , \ i=1,2 \\ &= \sum_{k=0}^\infty \frac{e^{-\lambda_i} \, \lambda_i^k}{k!} S^k = e^{-\lambda_i} \sum_{k=0}^\infty \frac{(\lambda_i S)^k}{k!} = e^{-\lambda_i} \ e^{\lambda_i S} \\ &= e^{\lambda_i (S-1)} \quad , \ i=1,2 \end{split}$$
 Then the p.g.f. of Z is:

$$P_{Z}(S) = \prod_{i=1}^{2} P_{X_{i}}(S) = P_{X_{1}}(S) P_{X_{2}}(S)$$
, [from theorem (1)]
 $= e^{\lambda_{1}(S-1)} e^{\lambda_{2}(S-1)}$
 $= e^{(\lambda_{1}+\lambda_{2})(S-1)}$
 $= e^{\lambda(S-1)}$, where $\lambda = \lambda_{1} + \lambda_{2}$

Then the distribution of Z is a Poisson distribution with parameter ($\lambda_1 + \lambda_2$),

$$Z \sim poi(\lambda_1 + \lambda_2)$$
.

Stochastic Processes (1) \ Statistics & Informatics dep.\Fourth class. (2023-2024)

Assistant prof. Dr. Muthanna Subhi Sulaiman \University of Mosul.

The mean of Z is:

$$E(Z) = P'_{Z}(1) = (\lambda_{1} + \lambda_{2}) e^{(\lambda_{1} + \lambda_{2})(S-1)} \Big|_{S=1}$$

= $\lambda_{1} + \lambda_{2}$, the mean of Z .

$$var(Z) = P_Z''(1) + P_Z'(1) - [P_Z'(1)]^2$$

$$P_Z''(1) = (\lambda_1 + \lambda_2)^2 e^{(\lambda_1 + \lambda_2)(S-1)} \Big|_{S=1} = (\lambda_1 + \lambda_2)^2$$

Then:

$$var(Z) = (\lambda_1 + \lambda_2)^2 + (\lambda_1 + \lambda_2) - (\lambda_1 + \lambda_2)^2$$
$$= (\lambda_1 + \lambda_2) \text{, the variance of } Z.$$