Stochastic Processes (1)

Lecture 6: P.G.F. of Sum of Random Number of r.v.'s

(1-5) P.G.F. of Sum of Random Number of Discrete r.v.'s:

To explain this subject we take this example, if X_i denotes to the number of person's involved the (i^{th}) accident in a day in a certain city, and if the number (N) of accident happening on a day is a random variable, then the sum:

 $S_n = \sum_{i=1}^n X_i$ denoted the total number of persons involved in accidents on a day.

Theorem (3):

Let X_i , $i=1,2,\ldots,n$ be (i.i.d.) random variables with $P_r\{X_i=k\}=p_k,$ and p.g.f. of X_i is:

$$P_{X_i}(S) = \sum_{k=0}^{\infty} p_k S^k$$

and let the sum:

 $S_N = X_1 + X_2 + \dots + X_N$, where N is a random variable independent of the X_i 's. Let the distribution of (N) is given by:

 $P_r{N = n} = g_n$, where the p.g.f. of N is given by:

$$G_N(S) = \sum_{n=0}^{\infty} g_n S^n \qquad \dots 1.14$$

Then H(S) is the p.g.f. of the sum S_N , and it given by compound function:

$$H(S) = \sum_{j=0}^{\infty} h_j S^j = \sum_{j=0}^{\infty} P_r \{S_N = j\} S^j$$
, Where $h_j = P_r \{S_N = j\}$

Then:
$$H(S) = G_N[P_X(S)]$$
 ... 1.15

Proof:

Since N is a random variable which can assume values (0,1,2,...), then the event: $\{S_N = j\}$ can be happen in the mutually exclusive ways:

$$[N = n \text{ and } S_n = X_1 + X_2 + \dots + X_n = j], \text{ for } n = 1,2,\dots$$

Define that $X_0 = S_0 = 0$, so that:

$$X_0 + X_1 + X_2 + \dots + X_n = S_n$$
 , $n \ge 0$ Then:

Then:

$$h_j = P_r\{S_N = j\} = \sum_{n=0}^{\infty} P_r\{N = n, S_n = j\}$$

Since N is independent of X_i 's and therefor of S_n , then:

$$h_{j} = \sum_{n=0}^{\infty} P_{r} \{ N = n \} P_{r} \{ S_{n} = j \}$$
$$= \sum_{n=0}^{\infty} g_{n} P_{r} \{ S_{n} = j \}$$

Then the p.g.f. of the sum $S_N = X_1 + X_2 + \cdots + X_N$ is given by:

$$H(S) = \sum_{j=0}^{\infty} h_j S^j = \sum_{j=0}^{\infty} \left[\sum_{n=0}^{\infty} g_n P_r \{ S_n = j \} S^j \right]$$
$$= \sum_{n=0}^{\infty} \left[\sum_{j=0}^{\infty} P_r \{ S_n = j \} S^j \right] g_n$$

Since: $S_n = X_1 + X_2 + \dots + X_n$ is (i.i.d) r.v's of sum of fixed number n [from theorem (2)], then:

$$H(S) = \sum_{n=0}^{\infty} [P_X(S)]^n g_n$$

= $G_N[P_X(S)]$, compound function.

Note: if $P_X(S)$ and $G_N(S)$ are two p.g.f., then the $G_N[P_X(S)]$ is also p.g.f.

Corollary (1):

The mean and variance of the sum $S_N = \sum_{i=1}^N X_i$, (where N is a random variable) are :

1.
$$E(S_N) = E(N).E(X_i)$$
 ... 1.16

2.
$$var(S_N) = E(N). var(X_i) + [E(X_i)]^2. var(N)$$
 ... 1.17 **Proof:**

1. Since H(S) is the p.g.f. of the sum S_N , then:

$$H(S) = G_N(P_X(S))$$
, [theorem (3)]

Then the mean of S_N is:

$$E(S_N) = H'(1)$$

$$= G'_N(P_X(S)).P'_X(S)|_{S=1}$$

$$= G'_N(1).P'_X(1) , \text{ since } P_X(1) = 1$$

$$= E(N).E(X_i) .$$

2. Since H(S) is the p.g.f. of the sum S_N , then:

$$var(S_N) = H''(1) + H'(1) - [H'(1)]^2$$
, (from the definition of variance)

Since:

$$H''(1) = P_X'(S).G_N''(P_X(S)).P_X'(S)\big|_{S=1} + G_N'(P_X(S)).P_X''(S)\big|_{S=1}$$
$$= [P_X'(1)]^2.G_N''(1) + G_N'(1).P_X''(1)$$

Then:

$$var(S_N) = [P'_X(1)]^2 \cdot G''_N(1) + G'_N(1) \cdot P''_X(1) + G'_N(1) \cdot P'_X(1)$$

$$- [G'_N(1) \cdot P'_X(1)]^2$$

$$= G'_N(1)[P''_X(1) + P'_X(1)] + [P'_X(1)]^2[G''_N(1) - [G'_N(1)]^2]$$
... 1.18

By adding and subtracting the amount $[P'_X(1)]^2G'_N(1)$ to the right side of the equation (1.18), we have:

$$var(S_N) = G'_N(1)[P''_X(1) + P'_X(1)] - [P'_X(1)]^2 G'_N(1)$$

$$+ [P'_X(1)]^2 G'_N(1) + [P'_X(1)]^2 [G''_N(1) - [G'_N(1)]^2]$$

$$var(S_N) = G'_N(1)[P''_X(1) + P'_X(1) - [P'_X(1)]^2]$$

$$+ [P'_X(1)]^2 [G''_N(1) + G'_N(1) - [G'_N(1)]^2]$$

$$var(S_N) = E(N). var(X_i) + [E(X_i)]^2. var(N),$$

Proof of theorem.

Example (1.13):

If $S_N = X_1 + X_2 + ... + X_N$ where N has a Poisson distribution with mean λ , and if X_i are (i.i.d) random variables with Geometric distribution:

 $P_r\{X_i = k\} = pq^k$, find the p.g.f. of the sum S_N and the mean and variance of it.

Stochastic Processes (1) \ Statistics & Informatics dep.\Fourth class. (2023-2024)

Assistant prof. Dr. Muthanna Subhi Sulaiman \University of Mosul.

Solution:

Since: $N \sim poi(\lambda)$, then the p.g.f. of N is:

$$G_N(S) = e^{\lambda(S-1)}$$
, with mean and variance λ .

And since: $X_i \sim Geo(p)$, then the p.g.f. of X_i is:

$$P_{X_i}(S) = \frac{p}{1-qS}$$
, with mean $\left(\frac{q}{p}\right)$ and variance $\left(\frac{q}{p^2}\right)$.

Then the p.g.f. of $S_N = X_1 + X_2 + \ldots + X_N$ is:

$$H(S) = G_N[P_{X_i}(S)]$$
, [theorem (3)]
= $G_N[\frac{p}{1-qS}]$
= $e^{\lambda(\frac{p}{1-qS}-1)}$, the p.g.f. of S_N .

The mean of S_N is:

$$E(S_N) = E(N).E(X_i) = \lambda \frac{q}{p} = \frac{\lambda q}{p}$$

The variance of S_N is:

$$var(S_N) = E(N). var(X_i) + [E(X_i)]^2. var(N)$$
$$= \lambda \frac{q}{p^2} + \left(\frac{q}{p}\right)^2 \lambda$$
$$= \frac{\lambda q}{p^2} (1 + q).$$

Stochastic Processes (1) \ Statistics & Informatics dep.\Fourth class. (2023-2024)

Assistant prof. Dr. Muthanna Subhi Sulaiman \University of Mosul.

Example (1.14):

Let $X_1+X_2+\ldots+X_N$ be (i.i.d) random variables with Poisson distribution (λ), find the p.g.f. of:

$$S_N = \sum_{i=1}^N X_i$$
, where:

- 1. *n* is fixed integer.
- 2. N is random variable and has a Binomial distribution with parameter (n, p).

Solution:

1. Since X_i is Poisson distribution with the same parameter (λ) , then the p.g.f. of X_i is:

$$P_{X_i}(S) = e^{\lambda(S-1)}$$
, for all X_i .

Then the p.g.f. of sum i.i.d. (S_N) is:

$$P_{S_n}(S) = [P_X(S)]^n, \quad \text{[theorem (2)]}$$
$$= [e^{\lambda(S-1)}]^n = e^{n\lambda(S-1)}$$

2. Since N is Binomial distribution with parameters (n, p), then the p.g.f. of the random variable N is:

$$G_N(S) = \sum_{n=0}^{\infty} g_n S^n = (pS + q)^n$$

Then the p.g.f. of (S_N) when N is r.v., is:

$$H(S) = G_N[P_{X_i}(S)]$$
, [Theorem (3)]
= $G_N[e^{\lambda(S-1)}]$
= $(pe^{\lambda(S-1)} + q)^n$, the p.g.f. of S_N

Remark: To find the mean and variance of S_N when N is random variable:

$$E(S_N) = H'(S)$$

= $E(N).E(X_i) = np \lambda$, the mean of S_N .

The variance of S_N is:

$$var(S_N) = E(N).var(X_i) + [E(X_i)]^2.var(N)$$
$$= np \lambda + \lambda^2 npq = \lambda np(1 + \lambda q).$$

H.W: From example (1.14), find the mean and variance of S_N when: $X_i \sim Poi(2)$ and $N \sim Bin(30, \frac{1}{2})$.