LZW Coding

LZW coding is conceptually very simple. At the onset of the coding process, a codebook or "dictionary" containing the source symbols to be coded is constructed. For 8-bit monochrome images the first 256 words of the dictionary are assigned to the gray values 0, 1, 2,, 255. As the encoder sequentially examines the images pixels graylevel sequences that are not in the dictionary are placed in algorithmically determined (e.g. the next unused) locations. If the first two pixels of the image are white, for instance, sequence "255-255" might be assigned to location 256 the address following the locations reserved for graylevels 0 through 255 the next time that two consecutive white pixels are encountered, code word 256, the address of the location containing sequence 255-255 is used to represent them. If a 9-bit, 512 word dictionary is employed in the coding process, the original (8+8) bits that were used to represent the two pixels are replaced by a single 9-bit code word. Cleary, the size of the dictionary is an important system parameter. If it is too small, the detection of matching gray-level sequences will be less likely, if it is too large the size of the code words will adversely affect compression performance.

Example:	Cons	ider the	e follow	ing 4*4,	8-bit	image	(256)	gray)
39	39	126	126					
39	39	126	126					
39	39	126	126					
39	39	126	126					

Explain details the steps involved in coding its 16 pixels.

	Dictionary Location	Entry	
	0	\overline{O}	
	1	1	
A 512 word	•	•	
dictionary with th	e .	•	
following starting		•	
content is assumed	255	255	
	256	-	Location 256
	•		through 511 are
	•	•	initially unused
	•	•	
	511	-	

The image is encoded by processing its pixels in a left to right, top to bottom manner. Each successive graylevel value is concatenated.

Pixel being Processed 39	Encoded <u>Output</u> -	Dictionary <u>Location</u>	Dictionary <u>Entry</u>
39	→ 39	256	39-39
126	39	257	39-126
126	126	258	126-126
39 7	126	259	126-39
39	_		
126 \	256	260	39-39-126
126	_		
39	258	261	126-126-39
39	-		
126	-		
126	260	262	39-39-126-126
39	_		
39 J	259	263	126-39-39
126	_		
126	257	264	39-126-126
	126		

Example: Use LZW algorithm to encode the following message "BET BE BEE BED BEG"

<u>Step</u> 1	<u>Char</u> <u>Coa</u>	<u>le output</u> -	New Code of already exist	
2	В	Space	SpaceB	256
3	E	` B	BE	257
4	T	E	ET	258
5	Space	T	TSpace	259
6	B	-		
7	E	SpaceB	SpaceBE	260
8	Space	E	ESpace	261
9	В	nothing		
10	E	nothing		
11	Е	SpaceBE	SpaceBEE	262
12	Space	nothing		
13	В	ESpace	ESpaceB	263
14	E	nothing	BE alread	ly exit in table
15	D	BE	BED	264
16	Space	D	DSpace	265
17	В	nothing	SpaceB	already exist
18	Е	nothing	SpaceBE	already exist
19	G	SpaceBE	SpaceBEG	266
20	End			