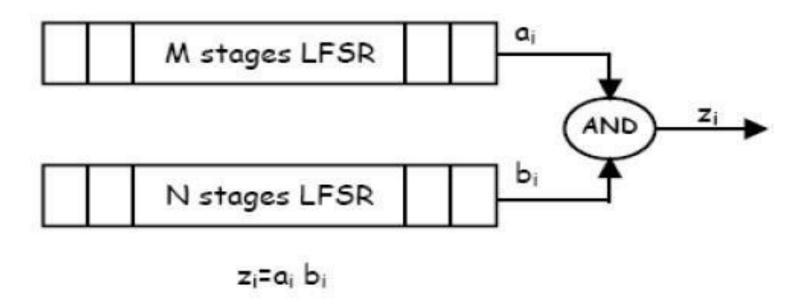
Cryptography Lecture six

Stream Cipher (cont.)

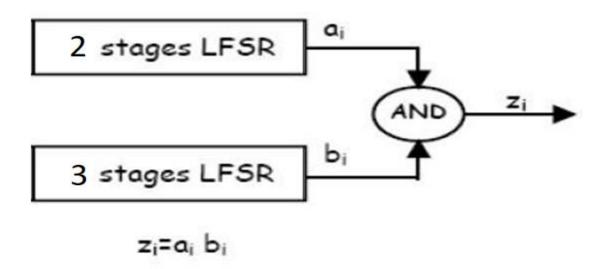
Assis prof. Dr. Saja Jasem Mohammed

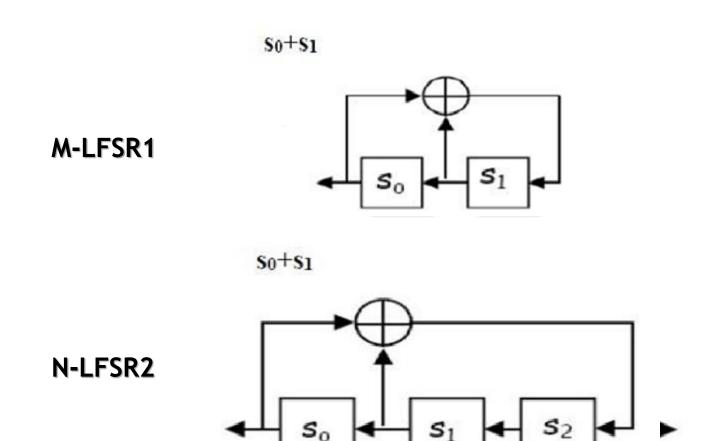

NON LINEAR FEEDBACK SHIFT REGISTER

- **▶** Non linear algorithms types:
- 1.Linear Feedback Shift Register (LFSR) with combining elements.
 - ✓ Hadamard algorithm
 - ✓J-K flip flop
 - ✓ Geffe's algorithm
- 2. Non Linear Feedback Shift Registers (NLFSR).

2024-2025

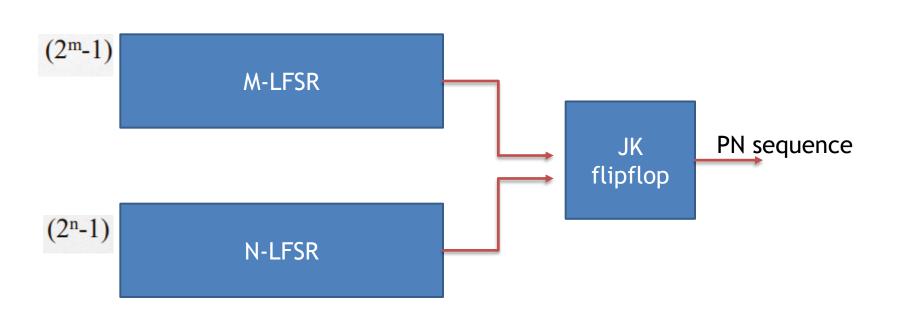
Hadamard Algorithm


- ► This algorithm consists of <u>two linear feedback shift registers</u>. Each one has a linear feedback function, which will give the maximum period.
- ► The length of these registers are <u>different</u> but has the property that the greatest common divisor between their length=1.
- ▶ i.e. let M and N equal the length of the shift registers, hence the gcd(M,N)=1


- When the gcd(M,N)=1, the period length of the final sequence is $(2^{M}-1)(2^{N}-1)$, which is the maximum period.
 - Note: we can use the OR operation instead of AND

Example:

- We have two linear feedback shift registers with 2 and 3 stages respectively, with initial states [1,1] and [1,1,1] respectively.
- Apply the Hadamard algorithm to find the resulting sequence.


2024-2025

Note: Since gcd(2,3)=1, hence the period of the resulting sequence =3*7=21.

Α	1	1	0	1	1	0	1	1	0	1	1	0	1	1	0	1	1	0	1	1	0
В	1	1	1	0	0	1	0	1	1	1	0	0	1	0	1	1	1	0	0	1	0
Z																					

J-K FLIP FLOP ALGORITHM

CLK Q

The Truth Table JK Flip Flop

J	K	State
0	0	No change in state
0	1	Resets Q to 0
1	0	Sets Q to 1
1	1	Toggles

Initial value of memory=0

A	1	1	0	1	1	0	1	1	0	1	1	0	1	1	0	1	1	0	1	1	0	
В	1	1	1	0	0	1	0	1	1	1	0	0	1	0	1	1	1	0	0	1	0	
Z																						

Geffe's Generator algorithm

a	b	С	Х	Υ	output
0	0	0	0	0	0
0	0	1	0	1	1
0	1	0	0	0	0
0	1	1	0	0	0
1	0	0	0	0	0
1	0	1	0	1	1
1	1	0	1	0	1
1	1	1	1	0	1

This keystream generator sequence length is $(2^A - 1)^*(2^B - 1)^*(2^C - 1)$

A	1	1	0	1	1	0	1	1	0	1	1	0	1	1	0	1	1	0	1	1	0
В	1	0	1	1	1	0	1	1	0	1	1	1	0	1	1	1	1	0	1	0	0
С	1	0	0	0	1	0	0	1	0	1	0	0	0	0	0	1	1	0	1	0	0
Z																					

X=a and b Y= ~ b And c Output = X Xor Y

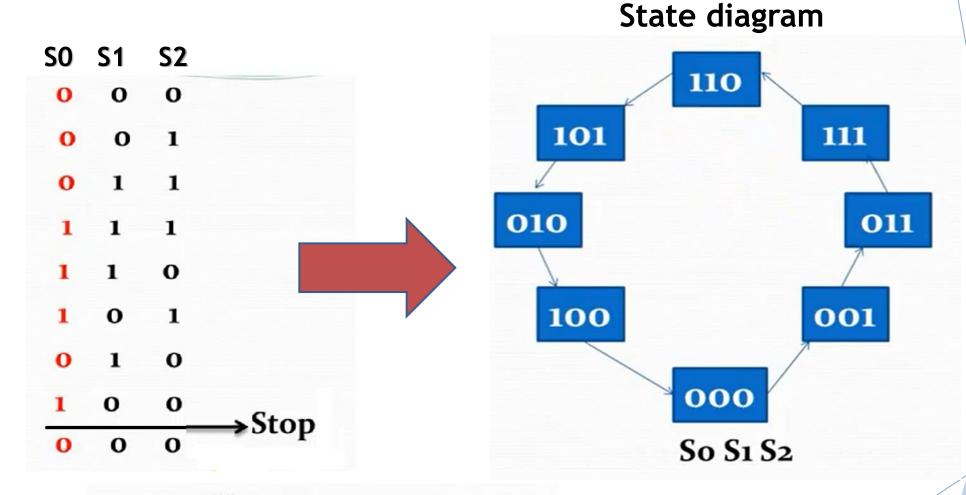
H.W.

LFSR1 M=4, F= S0 + S3, 1011 LFSR2 N=3, F= S0 + S2, 101 LFSR3 L=2, F= S0 + S1, 11 Find the Max Sequence using:

- 1. Geffe's generator
- 2. J.K. flipflop

Non Linear Feedback Shift Registers (NLFSR)

- Non linear feedback shift register (of this type) is a shift register whose input bit is a non-linear function of its previous state.
- ► It is a shift register contains modulo2 adder (**XOR**) with modulo2 multiplier (**AND**) in its feedback function.
- ▶ The maximum sequence length is **2^n**.
- ► The function **must** have logic one.
- **Each stage must appear** at least one in the feedback function.


Example

► Suppose You have NLFSR with 3 flipflops and feedback function **f**=**1**+ **S0**+**S1**+**S1S2**, what is the output keystream sequence?

Solution steps:

- ► Find maximum sequence (using truth table).
- Convert to a **state diagram**.
- Check numbers of ones and zeros

The solution:

Key =00011101
Maximum Sequence =8
no. of 0's = no. of 1's =4 → random seq.