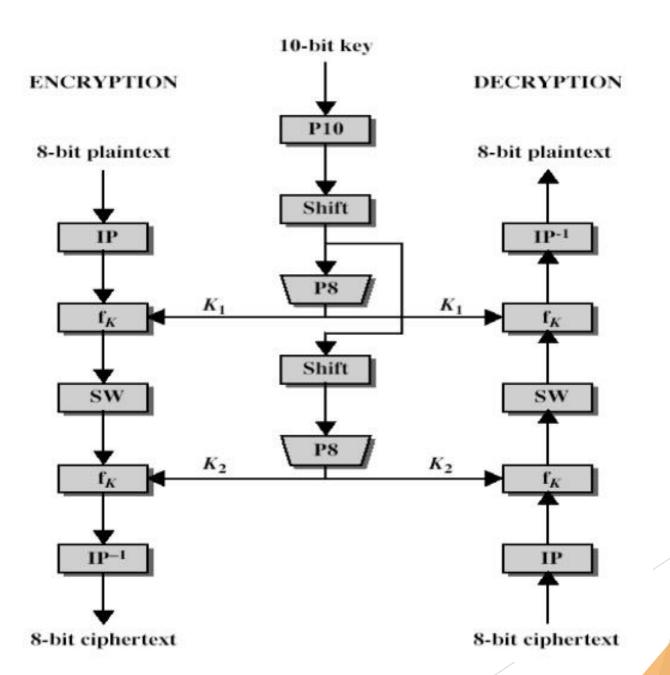
Block Cipher


Eighth lecture(cont.)

By: Assist Prof. Dr. Saja J. Mohammed 2024-2025

Simplified Data Encryption Standard (S-DES)

- ► Simplified Data Encryption Standard is a simple version of Data Encryption Standard which discovered in 1970's.
- ▶ It was developed for educational purpose so that understanding DES can become easy.
- ► <u>It has a **10-bit key and 8-bit plaintext**.</u>
- ▶ It is a block cipher algorithm and uses a symmetric key for its algorithm i.e. they use the same key for both encryption and decryption.
- ▶ It has **2 rounds** for encryption which use two different keys.
- ▶ S-DES is a type of product block cipher.
- **Product cipher** is a cryptographic technique that combines multiple simple transformations to encrypt or decrypt data. It operates on blocks of data and uses both <u>substitution and permutation</u> methods. Product ciphers are designed to <u>enhance encryption strength through complexity</u>

S-DES

P- Box in S-DES

S-DES has 5 types of permutation box:

- ✓ IP and IP^{-1} (Initial permutate, *straight* 8bit)
- ✓ P10 (*straight* permutate 10 bits)
- ✓ P4 (*straight* permutate 4bits)
- ✓ P8 (*compression* permutate 10 bits → 8bits)
- ✓ EP (*expanded* permutate 4bits → 8 bits)

P10 table

	1	2	3	4	5	6	7	8	9	10
Input										
Output	3	5	2	7	4	10	1	9	8	6

P8-1	Гab	le

Input	1	2	3	4	5	6	7	8	9	10
Output	6	3	7	4	8	5	10	9		

IP table

Input	1	2	3	4	5	6	7	8
Output	2	6	3	1	4	8	5	7

P 4 Table

Input	1	2	3	4
Output	2	4	3	1

E.P Table

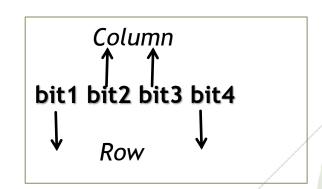
Input	1	2	3	4		ı	ı	
Output	4	1	2	3	2	3	4	1

S-box in S-DES

S-0

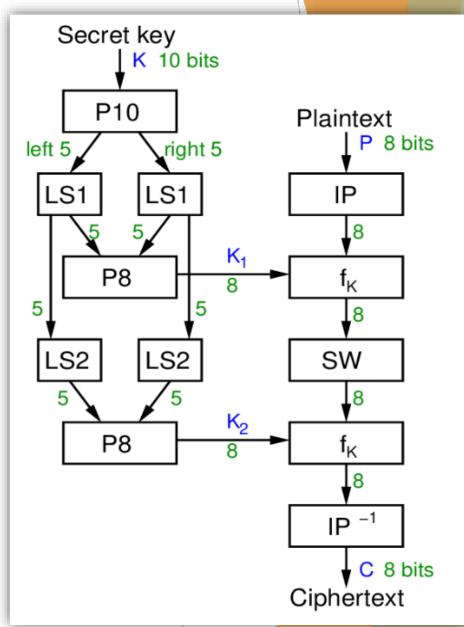
Col	0	1	2	3
Rows				
0	01	00	11	10
1	11	10	01	00
2	00	10	01	11
3	11	01	11	10

S-1

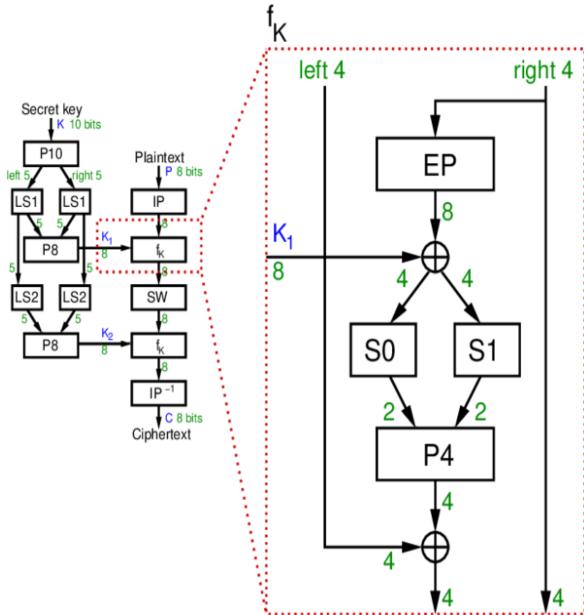

Col	0	1	2	3
Rows				
0	00	01	10	11
1	10	00	01	11
2	11	00	01	00
3	10	01	00	11

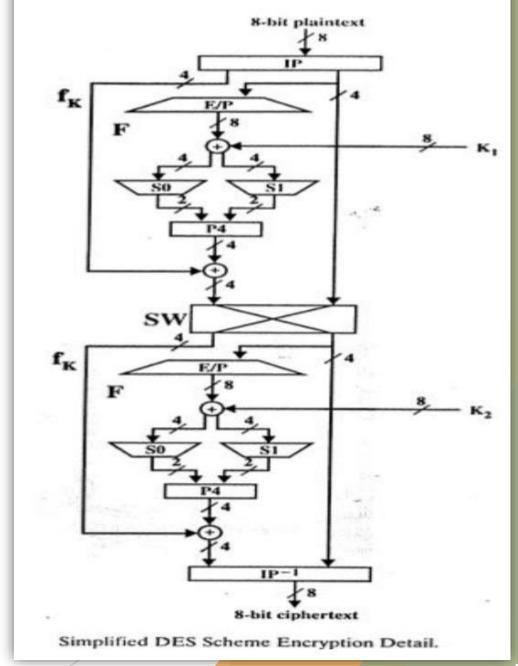
4-bit input: bit1,bit2,bit3,bit4
2-bits Output

bit1 ,bit4 specifies row (0, 1, 2 or 3 in decimal) bit2 , bit3 specifies column ex.


1010

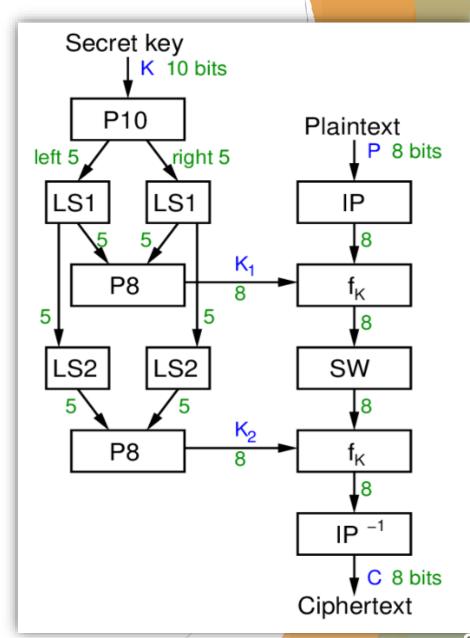
That mean row 2 and column 1 → output is 10 (in S0) → output is 00 (in S1)




S-DES Encryption/ Decryption

- **▶** The encryption algorithm involves five functions:
- 1. An initial permutation (IP)
- 2. Applying the <u>round function</u> using round key K1 (this function involves both <u>permutation</u> and <u>substitution</u> operations and depends on a key input)
- 3. Switches (SW) the two halves of the data
- 4. Applying the round function using round key K2
- 5. A permutation function that is the inverse of the initial permutation (IP^{-1}) .

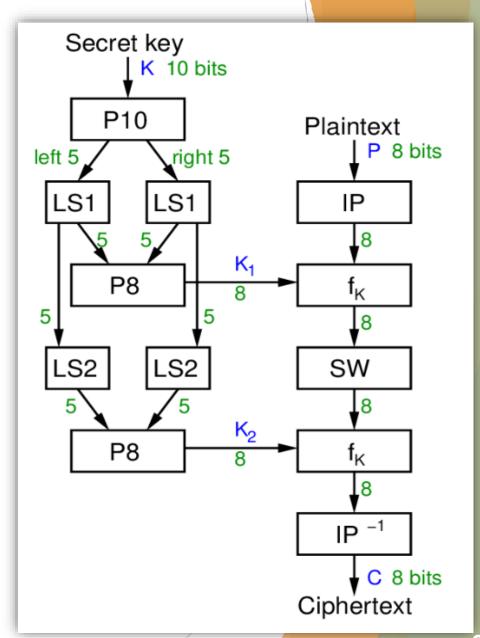
S-DES Round Function Details



2024-2025

S-DES Key Generation

- ▶ **Step 1:** Select a random key of 10-bits (shared between sender and receiver)
- ► Step 2: Put this key into P10 Table and permute the bits.
- ▶ **Step 3:** Divide the key into two halves, left half and right half;
- ► Step 4: Apply the one bit Round Shift (LS1)on each half Step 5: Combine both halve of the bits, right and left and Put them into the P8 table.
- > Step6:
 - Generate the second key(go in **step 4** copy both resulted halves, then apply two Round Shift(**LS2**), combine resulted halves and input the result to P8 table



S-DES Key Generation example

- Step 1:
- ► Select a random key of 10-bits (shared between sender and receiver)
- **Ex.** :1010000010
- **Step 2:** Put this key into P10 Table and permute the bits.

	1	2	3	4	5	6	7	8	9	10
Input										
Output	3	5	2	7	4	10	1	9	8	6
Should										
be										

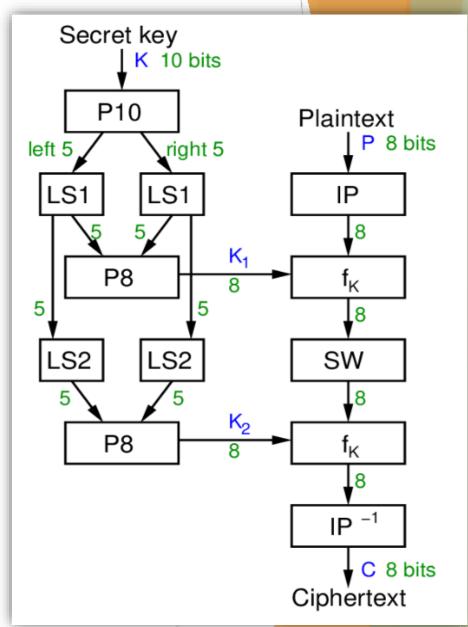
Input	1	0	1	0	0	0	0	0	1	0	Kar :: 1000001100
Output	1	0	0	0	0	0	1	1	0	0	Key: 1000001100

S-DES Key Generation example

▶ **Step 3**: Divide the key into two halves, left half and right half;

Left {1 0 0 0 0} | right {0 1 1 0 0}

Step 4: Apply the one bit Round shift on each half:


Before round shift: {10000} | {01100}

After round shift: {00001} | {11000}

- ► The output will be: {0 0 0 0 1} {1 1 0 0 0}
- **▶** Step 5:
- ► Combine both halve of the bits, right and left and put them into the P8 table. That will be the K1 or First key.
- Input key: 0000111000 The output and K1 or key One will be: **K1=10100100(8 bit)**

P8-Table

Input	1	2	3	4	5	6	7	8	9	10
Combine-bits	0	0	0	0	1	1	1	0	0	0
Output Should be	6	3	7	4	8	5	10	9		
Output bits	1	0	1	0	0	1	0	0		

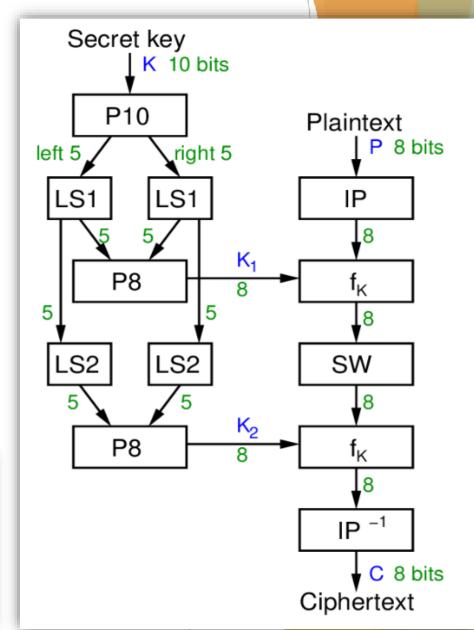
S-DES Key Generation example

Step6:

Generate the second key(go in step 4 copy both resulted halves, then apply two round shift, combine resulted halves and input the result to P8 table

00001 11000 **→** 00100 00011

(0010000011) input to p8 table \rightarrow 0010000011 (the output)


► The resulted key (key 2) will be: 0 1 0 0 0 0 1 1 (8 bit)

The generated keys are:

K1: 10100100

K2: 01000011

ı	P8-Table										
ı	Input	1	2	3	4	5	6	7	8	9	10
ı	Combine-bits	0	0	0	0	1	1	1	0	0	0
ı	Output Should be	6	3	7	4	8	5	10	9		
ı	Output bits	1	0	1	0	0	1	0	0		
ш		_									

2024-2025

S-DES Summary (properties)

- Block size: 8 bits and key size: 10 bits
- Rounds: 2
- Round key: 2 round key each of size 8 bits
- S-Boxes: 2
- Permutations types: 5
 - ✓ P10 (straight permutate 10bits)
 - ✓ P8 (compression permutate 10 bits → 8bits)
 - ✓ P4 (straight permutate 4bits)
 - ✓ IP and IP^{-1} (Initial permutate, *straight 8bit*)
 - ✓ EP (expanded permutate 4bits → 8 bits)

12

S-DES Summary

- It is Educational encryption algorithm.
- It is a type of product cipher.
- S-DES expressed as functions:
 - ciphertext = IP-1(f K2(SW(fK1(IP(plaintext)))))
 - plaintext = IP-1(f K1(SW(fK2(IP(ciphertext)))))
- Brute force attack on S-DES is easy since only 10-bit key.
- If know plaintext and corresponding ciphertext, can we determine key? **Very hard.**
- The general design of **S-DES** follows the same principles as **DES**, although the algorithm parameters differ.

- ► Find the result of the following:
- ▶ 1. GCD(35, 127)
- \triangleright 2. $7^{-1} \mod 3$