Chapter One

الصفات التبولوجية والصفات غير التبولوجية Topological and Non-Topological Properties

Definition (1.1): (Open and Closed Functions)

We say that the function $f:(X,\tau)\to (X^*,\tau^*)$ is:

- (1) **Open** iff f(G) is open in X^* for each open G in X.
- (2) **Closed** iff f(F) is closed in X^* for each closed F in X.

Example (1.1): Let (X, τ) be any topological space, and let $X^* = \{a, b, c\}$, $\tau^* = \{\emptyset, \{a\}, \{a, c\}, X^*\}$. Then $f: (X, \tau) \to (X^*, \tau^*)$ such that $f(x) = a, \forall x \in X$ is

- (i) Continuous
- (ii) Open
- (iii) Not closed

Proof:

- (i) The open sets containing f(x) = a are $\{a\}$, $\{a,c\}$, X^* , and any open $G \ni x$, $f(G) = \{a\}$, $\forall^{open} G^* \ni f(x)$, $\exists^{open} G \ni x$, such that $f(G) \subset G^*$
 - \therefore f is continuous
- (ii) Let G be any open set in X

Now, $f(G) = \{a\}$ is open in $X^* \Rightarrow f$ is open function

(iii) f is not closed

Since $f(F) = \{a\}$ not closed $\forall^{closed} F \subset X$

Theorem (1.1): Let $f:(X,\tau) \to (X^*,\tau^*)$ and $E \subset X$. Then f is open iff $f(E^\circ) \subset (f(E))^\circ, \forall E \subset X$.

Proof: Let f is open and $E^{\circ} \subset X$ is open

 $\Rightarrow f(E^{\circ})$ is open

We have

$$E^{\circ} \subset E$$

$$\Rightarrow f(E^{\circ}) \subset f(E)$$

$$\Rightarrow (f(E^{\circ}))^{\circ} \subset (f(E))^{\circ}$$

$$\Rightarrow f(E^{\circ}) \subset (f(E))^{\circ}$$

Conversely:

Assume that $f(E^{\circ}) \subset (f(E))^{\circ}$, $\forall E \subset X$

Let $G \subset X$ be an open set

We get

$$f(G^{\circ}) \subset (f(G))^{\circ}$$

$$\Rightarrow f(G) \subset (f(G))^{\circ}$$
 (G is open set)

But
$$(f(G))^{\circ} \subset f(G)$$

$$\Rightarrow f(G) = (f(G))^{\circ}$$

 $\Rightarrow f(G)$ is open set

 \Rightarrow f is open function

Theorem (1.2): Let $f:(X,\tau) \to (X^*,\tau^*)$ and $E \subset X$. Then f is closed iff $\overline{(f(E))} \subset f(\overline{E}), \forall E \subset X$.

Proof: We have f closed and \overline{E} is closed

 $\Rightarrow f(\bar{E})$ closed

We have $E \subset \bar{E}$

$$\Rightarrow f(E) \subset f(\bar{E})$$

$$\Rightarrow \overline{f(E)} \subset \overline{f(\bar{E})}$$

$$\Rightarrow \overline{f(E)} \subset f(\bar{E}), \forall \, E \subset X$$

Conversely:

Assume that $\overline{f(E)} \subset f(\overline{E}), \forall E \subset X$

Let $F \subset X$ be closed set (i.e. $F = \overline{F}$)

We get

$$\overline{f(F)} \subset f(\overline{F})$$

$$\Rightarrow \overline{f(F)} \subset f(F)$$
 (F is closed set)

But
$$f(F) \subset \overline{f(F)}$$

$$\Rightarrow f(F) = \overline{f(F)}$$

- $\Rightarrow f(F)$ closed set
- \Rightarrow f is closed function

Exercises (1.1): (Homework)

(1) If $g:(X,\tau) \to (X^*,\tau^*)$ is defined by $g(x) = b, \forall x \in X$. Let (X,τ) be any topological space, and $X^* = \{a,b,c\}, \tau^* = \{\emptyset,\{a\},\{a,c\},X^*\}$. Discuss the properties of g continuous, open and closed.

Definition (1.2): (Topological Homeomorphism)

التشاكل التبولوجي

We say that the function $f:(X,\tau)\to (X^*,\tau^*)$ is a **topological homeomorphism** iff the following conditions satisfied:

- (3) f is continuous.
- (4) f is one-to-one.
- (5) f is onto.
- (6) f is open.

Remark (1.1): According to the Fundamental Theorem of Continuity, the condition (f is open) can be replace by the condition (f^{-1} is continuous).

Example (1.2): Let (X, τ) be any topological space, and let $X^* = \{a, b, c\}$, $\tau^* = \{\emptyset, \{a\}, \{a, c\}, X^*\}$. Define $f: (X, \tau) \to (X^*, \tau^*)$ as follows: $f(x) = a, \forall x \in X$. Determine whether f is a homeomorphism is or not.