Theorem (4.2): Every T_3 -space is T_2 -space.

Proof: Let (X, τ) be T_3 -space

We need to show that (X, τ) is T_2 -space

Let $x, y \in X, x \neq y$

Since (X, τ) is T_1 -space (since T_3 -space)

 \Rightarrow {y} is closed in X

 $\Rightarrow \{y\} = F \subset X \text{ and } x \in X, x \notin F$

Since (X, τ) is [R]

 \Rightarrow \exists disjoint open sets G, H with $F \subset G \land x \in H$

Since $y \in F \implies y \in G$

 \Rightarrow \exists disjoint open sets G, H with $y \in G \land x \in H$

 \Rightarrow (X, τ) is T_2 -space

.....

الفضاء السّوي (Normal Space) الفضاء السّوي

We say that (X, τ) is **normal space** denoted by [N] if \forall disjoint closed sets F_1, F_2 in X, \exists disjoint open sets G, H with $F_1 \subset G \land F_2 \subset H$.

Example (4.3): Let $X = \{a, b, c\}, \tau = \{\emptyset, \{a\}, \{b, c\}, X\}$. Discuss whether (X, τ) is [N] or not.

Solution: The closed sets are: X, $\{b, c\}$, $\{a\}$, \emptyset

 $F_1 = \{b, c\}$ and $F_2 = \{a\}$, we have $G = \{b, c\}$ and $H = \{a\}$ are disjoint open set with $F_1 \subset G \land F_2 \subset H$

 $\Rightarrow (X, \tau) \text{ is } [N]$

Theorem (4.3): The property (X, τ) -[N] is a topological property.

Proof: Let $f:(X,\tau) \to (X^*,\tau^*)$ be a homeo.

Let (X, τ) is [N]

Let F_1^* , F_2^* disjoint closed subset for X^*

Since *f* is onto

$$\Rightarrow \exists F_1, F_2 \subset X$$
, s.t. $F_1^* = f(F_1)$ and $F_2^* = f(F_2)$

Since *f* is continuous

$$\Rightarrow F_1 = f^{-1}(F_1^*), F_2 = f^{-1}(F_2^*)$$
 are closed sets in X

Since f is (1-1)

$$\Rightarrow F_1 \cap F_2 = f^{-1}(F_1^*) \cap f^{-1}(F_2^*)$$
$$= f^{-1}(F_1^* \cap F_2^*) = f^{-1}(\emptyset) = \emptyset$$

Since (X, τ) is [N]

 \exists disjoint open sets G, H s.t. $F_1 \subset G \land F_2 \subset H$

Since *f* is open

$$\Rightarrow G^* = f(G)$$
 and $H^* = f(H)$ are open in X^*

$$G^* \cap H^* = f(G) \cap f(H)$$

$$= f(G \cap H) = f(\emptyset) = \emptyset$$

Now,
$$F_1 \subset G \Rightarrow f(F_1) \subset f(G) \Rightarrow F_1^* \subset G^*$$

$$F_2 \subset H \Rightarrow f(F_2) \subset f(H) \Rightarrow F_2^* \subset H^*$$

 \Rightarrow \forall disjoint closed sets F_1^* , F_2^* in X^* ,

 \exists disjoint open sets G^* , H^* with $F_1^* \subset G^* \land F_2^* \subset H^*$

$$\Rightarrow (X^*, \tau^*) \text{ is } [N]$$

Remark (4.1): The property (X, τ) -[N] is not hereditary.

Definition (4.4): $(T_4$ **- Space)**

We say that (X, τ) is T_4 -space if (X, τ) is T_1 -space and [N].

Example (4.4): Let $X = \{a, b\}$, $\tau = \{\emptyset, \{a\}, \{b\}, X\}$. Discuss whether (X, τ) is T_4 -space or not.

Solution: The closed sets are: X, $\{b\}$, $\{a\}$, \emptyset

 $F_1 = \{b\}$ and $F_2 = \{a\}$, we have $G = \{b\}$ and $H = \{a\}$ are disjoint open set with

 $F_1 \subset G \land F_2 \subset H$

 $\Rightarrow (X, \tau) \text{ is } [N]$

Also, (X, τ) is T_1 -space, because For $a, b \in X$, $a \neq b$ and $\exists^{open} G = \{a\}, H =$

 $\{b\};\, a\in G, b\not\in G\ \land\ a\not\in H, b\in H$

 \Rightarrow (X, τ) is T_4 -space

Theorem (4.4): Every T_4 -space is T_3 -space.

Proof: Let (X, τ) be T_4 -space

We need to show that (X, τ) is T_3 -space

Let $F \subset X$ and $x \notin F$

Since (X, τ) is T_1 -space

 $\Rightarrow F_1 = \{x\} \text{ is closed}$

Since $F, F_1 \subset X$ and $F \cap F_1 = \emptyset$

Thus, we have $F, F_1 \subset X$ are disjoint and (X, τ) is [N]

 \Rightarrow \exists disjoint open sets G, H with $F \subset G \land x \in H$

 \Rightarrow (X, τ) is [R] and (X, τ) is T_1 -space \Rightarrow (X, τ) is T_3 -space.

Theorem (4.5): Every compact T_2 -space is T_4 -space.

Lemma (4.1): (Urysohn's Lemma)

قضية يوريسون

A topological space (X, τ) is [N] iff \forall disjoint closed sets F_1, F_2 in X, \forall closed interval $[a, b] \subset R$, \exists f is continuous function as follows:

$$f: X \to [a, b]$$
 s.t. $f(F_1) = \{a\}, f(F_2) = \{b\}.$

Pefinition (4.5): (Tietze's Axiom) بديهية تايتز

 \forall separable sets A, B, \exists two disjoint open sets G, H such that $A \subseteq G \land B \subseteq H$.

الفضاءات كاملة السوية (Completely Normal Spaces)

We say that (X, τ) is **complete normal space** denoted by [CN] if satisfies Tietze's axiom.

Example (4.5): Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, \{a\}, \{b, c\}, X\}$. Discuss whether (X, τ) is [CN]-space or not.

Solution: Since $A = \{a\}, B = \{b, c\}$ are closed and open

 \Rightarrow A, B are separable

 \exists two disjoint open sets $G = \{a\}, H = \{b, c\}$ such that $A \subset G, B \subset H$

 \Rightarrow (X, τ) is [CN]

Theorem (4.6): The property (X, τ) -[CN] is a topological property.

Proof: Let $f:(X,\tau) \to (X^*,\tau^*)$ be a homeo.

Let (X, τ) is [CN]

Let A^* , B^* are disjoint separable subset for X^*

Since f is continuous and (1-1)

 $\Rightarrow \exists A, B \text{ are disjoint separable subset for } X \text{ s.t. } A^* = f(A) \text{ and } B^* = f(B)$

Since (X, τ) is [CN]

 \Rightarrow \exists two disjoint open sets G, H such that $A \subset G \land B \subset H$

Since f is open

 $\Rightarrow G^* = f(G)$ and $H^* = f(H)$ are open in X^*

$$G^* \cap H^* = f(G) \cap f(H)$$
$$= f(G \cap H) = f(\emptyset) = \emptyset$$

Since f (1-1)

$$A \subset G \Rightarrow f(A) \subset f(G) \Rightarrow A^* \subset G^*$$

$$B \subset H \Rightarrow f(B) \subset f(H) \Rightarrow B^* \subset H^*$$

 $\Rightarrow \forall$ disjoint separable subset A^*, B^* for X^*

 \exists disjoint open sets G^* , H^* with $A^* \subset G^* \land B^* \subset H^*$