- $\Rightarrow (X^*, \tau^*)$ is [CN]
- \Rightarrow [CN] is a topological property.

Remark (4.2): The property (X, τ) -[CN] is not hereditary.

Theorem (4.7): The topological space (X, τ) is [CN]-space iff every subspace of (X, τ) is [N]-space.

Definition (4.7): $(T_5 - \text{Spaces})$

We say that (X, τ) is T_5 - space if is T_1 -space and [CN].

Definition (4.8): (Completely Regular Spaces) الفضاءات كاملة الانتظام

We say that (X, τ) is **complete regular space** denoted by [CR] if satisfies the following axiom:

 $\forall^{closed} \ F \subset X, \forall \ x \in X, x \notin F, \exists \text{ continuous function } f: X \to [0,1] \text{ such that } f(F) = \{1\}, f(x) = 0$

Definition (4.9): ($T_{3\frac{1}{2}}$ – Spaces (Tychonoff Space))

We say that (X, τ) is **Tychonoff space** denoted by $T_{3\frac{1}{2}}$ -space if (X, τ) is T_1 -space and [CR].

Theorem (4.8): Every metric space is Tychonoff space.

Theorem (4.9):

- (1) The property [CR] is hereditary.
- (2) The property [CR] is a topological property.

Proof:

(1) Let (X, τ) be [CR]

We need to show that (X^*, τ^*) is [CR]

Let $x \in X^*$ and $F^* \subset X^*$ be closed such that $x \notin F^*$

Since $X^* \subset X$

 \Rightarrow \exists closed $F \subset X$ such that $F^* = F \cap X^*$

Now, $x \in X^*$, $x \notin F^* \Rightarrow x \notin F$

Since X is [CR]

 \exists continuous function $f: X \to [0,1]$ such that $f(F) = \{1\}, f(x) = 0$

 $\Rightarrow f^*: X^* \rightarrow [0,1]$ which defined as

 $f^*(x) = f(x), \ \forall \ x \in X^*$ is continuous and satisfies

$$f^*(F^*) = \{1\}, f^*(x) = 0$$

- $\Rightarrow (X^*, \tau^*) \text{ is } [CR]$
- \Rightarrow [CR] is a hereditary property.

(2) Let $f: X \to X^*$ be a homeo.

Let (X, τ) be [CR]

We need to show that (X^*, τ^*) is [CR]

Let $x^* \in X^*$ and $F^* \subset X^*$ be closed such that $x^* \notin F^*$

Since f is continuous

$$\Rightarrow f^{-1}(F^*) = F \subset X$$
 is closed

Since *f* is onto

$$\Rightarrow \exists x \in X, f(x) = x^*$$

Since f^{-1} is (1-1), $x^* \notin F^*$

$$\Rightarrow f^{-1}(x^*) \notin f^{-1}(F^*) \Rightarrow x \notin F$$

We have $F \subset X$ is closed and $x \notin F$ but (X, τ) is [CR]

 \Rightarrow \exists continuous function $g: X \to [0,1]$ such that $g(F) = \{1\}, g(x) = 0$

We have

$$X^* \xrightarrow{f^{-1}} X \xrightarrow{g} [0,1]$$

$$\Rightarrow g_{\circ}f^{-1}: X^* \rightarrow [0,1]$$

 $g_{o}f^{-1}$ is continuous (The composite function of two continuous functions is continuous)

Now,
$$(g_0 f^{-1})(F^*) = g(f^{-1}(F^*)) = g(F) = \{1\}$$

$$\therefore (g_{\circ}f^{-1})(F^*) = \{1\}$$

$$(g_{\circ}f^{-1})(x^*) = g(f^{-1}(x^*)) = g(x) = 0$$

$$\therefore (g_{\circ}f^{-1})(x^*) = 0$$

- $\Rightarrow (X^*, \tau^*)$ is [CR].
- \Rightarrow [CR] is a topological property.

