- \Rightarrow f(E) is isolated.
- : The isolated set is a topological property.

Theorem (1.6): The property countably compact is a topological property.

Proof: Let $f:(X,\tau) \to (X^*,\tau^*)$ be a homo.

Let $E \subset X$ be a countably compact set

We need to show $f(E) \subset X^*$ is countably compact

Let $A^* \subset f(E)$ be an infinite set

Since f is onto and (1-1)

 $\Rightarrow \exists^{infinite} A \subset E \text{ such that } A^* = f(A)$

Now *E* is countablly compact and $A \subset E$ is infinite set

- $\Rightarrow \exists x \in E \text{ and } x \in d(A)$
- $\Rightarrow \exists x \in E \text{ and } \forall^{open} G \ni x; (G \cap A) \setminus \{x\} \neq \emptyset$

Since f is (1-1) and open

- $\Rightarrow \exists f(x) \in f(E) \text{ and } \forall^{open} f(G) \ni f(x); f[(G \cap A) \setminus \{x\}] \neq f(\emptyset)$
- $\Rightarrow \exists x^* \in f(E) \text{ and } \forall^{open} G^* \ni x^*; f(G) \cap f(A) \setminus \{f(x)\} \neq \emptyset$
- $\Rightarrow \exists x^* \in f(E) \text{ and } \forall^{open} G^* \ni x^*; G^* \cap f(A) \setminus \{x^*\} \neq \emptyset$
- $\Rightarrow \exists x^* \in f(E) \text{ and } x^* \in d(f(A)) = d(A^*)$
- \Rightarrow f(E) is countably compact.
- : The countablly compact is a topological property.

Example (1.5): Prove that the property "x is an interior point" is a topological property.

Solution: Let $f:(X,\tau) \to (X^*,\tau^*)$ be a homo.

Let $E \subset X$ and let $x \in E^{\circ}$

We need to show $x^* = f(x) \in (f(E))^\circ$

Since f is open, we have

 $f(E^{\circ}) \subseteq (f(E))^{\circ}$

Since $x \in E^{\circ}$

$$\Rightarrow x^* = f(x) \in f(E^\circ)$$

$$\Rightarrow x^* = f(x) \in ((f(E))^\circ$$

Example (1.6): Prove that the property "x is a boundary point" is a topological property.

Solution: Let $f:(X,\tau) \to (X^*,\tau^*)$ be a homo.

Let $E \subset X$ and let $x \in b(E) = \overline{E} - E^{\circ}$

 $\Rightarrow x \in \overline{E} \text{ and } x \notin E^{\circ}$

We need to show $x^* = f(x) \in b(f(E))$

Since $x \in \bar{E} - E^{\circ}$

$$\Rightarrow f(x) \in f[\bar{E} - E^{\circ}]$$

$$\Rightarrow x^* \in f(\bar{E}) - f(E^\circ)$$

Since f is continuous and open

$$\Rightarrow x^* \in \overline{f(E)} - (f(E))^\circ$$

$$\Rightarrow x^* = f(x) \in b(f(E))$$

Definition (1.5): We say that the property P is not topological property if P cannot be carried by a homeomorphism.

Example (1.7): Is the length property a topological property?

Solution: The length property is not topological property because the function $f:(R,d) \to (R,d)$ such that $f(x) = \frac{x}{4}$, $\forall x \in R$ where (R,d) the usual metric space is a homo. But $d(E) \neq d(f(E))$ because if E = (a,b)

$$d(E) = d(a, b) = |b - a|$$

$$d(f(E)) = d(f(a,b))$$

$$= d\left(\frac{a}{4}, \frac{b}{4}\right) = \left|\frac{b}{4} - \frac{a}{4}\right| = \frac{1}{4}|b - a| \neq |b - a| = d(E)$$

: The length property is not a topological property.

Example (1.8): Is the property Cauchy sequence a topological property?

Solution: The property Cauchy sequence is not topological property

Let
$$f: (R^*, d) \to (R^*, d)$$
 such that $f(x) = \frac{1}{x}$, $\forall x \neq 0$ is a homo.

Let $\{x_n\} = \left\{\frac{1}{n}\right\}$ be a sequence in (R^*, d) (domain)

We have
$$\left\{\frac{1}{n}\right\} \to 0 \implies \left\{\frac{1}{n}\right\}$$
 is Cauchy

But

$$f(\lbrace x_n \rbrace) = \lbrace f(x_n) \rbrace = \left\lbrace f\left(\frac{1}{n}\right) \right\rbrace = \lbrace n \rbrace \text{ is not Cauchy in } (R^*, d) \text{ (range)}$$

: The Cauchy sequence is not a topological property.

Exercise (1.2): (Homework)

(1) Prove that there exists a continuous function $f:(R,\tau)\to(R,\tau)$ which is closed but not open.
