Chapter Two

الصفات الوراثية والصفات غير الوراثية

Hereditary and Non-Hereditary Properties

Definition (2.1): (Absolute Property) الصفة المطلقة

We say that the property P is an **absolute property** if P does not depend on the topological space which contains the set E with P.

Example (2.1): Is "*E* connected" an absolute property?

Solution:

Let (X^*, τ^*) be a topological subspace of (X, τ)

Let $E \subset X$

We need to show that $(E \subset X)$ connected $\Leftrightarrow (E \subset X^*)$ connected

Let $A, B \neq \emptyset$ disjoint subset of $E = A \cup B$

Now, consider

$$(A \cap \bar{B}) \cup (\bar{A} \cap B) = (A \cap X^* \cap \bar{B}) \cup (\bar{A} \cap X^* \cap B)$$
$$= (A \cap \bar{B}^*) \cup (\bar{A}^* \cap B)$$

$$(A \cap \bar{B}) \cup (\bar{A} \cap B) = (A^* \cap \bar{B}^*) \cup (\bar{A}^* \cap B^*)$$

Now, if

$$(A \cap \bar{B}) \cup (\bar{A} \cap B) \neq \emptyset \iff (A^* \cap \bar{B}^*) \cup (\bar{A}^* \cap B^*) \neq \emptyset$$

That is E is connected in $X \leftrightarrow E$ connected in X^*

.-----

Definition (2.2): (Hereditary Property) الصفة الوراثية

We say that the property P is **hereditary property** if P satisfied in any topological subspace of the topological space (X, τ) .

Example (2.2): Disprove that the property "E compact" is not hereditary property?

Solution:

Let $(X, \tau) = (R, \tau)$ the usual topological

Let
$$E = [0,1]$$
 and $\tau^* = \{(a,b) \in [0,1], \emptyset, E\}$

We have *E* is a compact

But $I = (0,1) \subset E$ is not compact

Thus the compactness is not hereditary.

Example (2.3): The property "E open (E closed)" is not hereditary property.

Solution:

 $X = \{a, b, c, d, e\}$ and

$$\tau = \{\emptyset, \{a\}, \{a, b\}, \{a, c\}, \{a, b, c\}, \{a, c, d\}, \{a, b, c, d\}, X\}$$

$$X^* = \{a, b, d\} \text{ and } \tau^* = \{\emptyset, \{a\}, \{a, d\}, X^*\}$$

Now, we have

 $\{a,b\}$ is open in X

But $\{a, b\}$ is not open in X^*

Also, $\{b\}$ is closed in X^*

But $\{b\}$ is not closed in X.

Example (2.4): Prove the property " (X, τ) is discrete" is a hereditary property.

Solution:

Let (X, τ) be a discrete topological space

Let (X^*, τ^*) be a topological subspace of (X, τ)

We need to show that (X^*, τ^*) is discrete topological space

Since
$$X^* \subset X$$

$$\Rightarrow \tau^* = \{G^* = G \cap X^* \colon G \in \tau \}$$

If
$$E \in \tau$$
, $E \subset X^* \Rightarrow E \cap X^* = E$

 $\forall^{open} \ G \in \tau, G \subset X^* \ \Rightarrow G \cap X^* = G \subset X^*$

$$\Rightarrow \tau^* = \{G^* : G^* \subset X^*\}$$

 \Rightarrow (X^* , τ^*) discrete topological space.

Example (2.5): Prove the property " (X, τ) is connected" is not a hereditary property.

Solution:

Let (R, τ) be an usual topological space

Let (X^*, τ^*) be a topological subspace of (X, τ) , where $X^* = R \setminus \{0\}$

It is clear that $R \setminus \{0\}$ is not connected subset of the connected space R.
