Chapter Three بديهيات الفصل The Separation Axioms

Definition (3.1): (T_0 – Space (Kolmogorov Space)) فضاء کولمو غوروف We say that (X, τ) is T_0 -space iff $\forall x, y \in X (x \neq y)$, $\exists^{open} G \in \tau$ containing one of the points and not the other.

Example (3.1): Let $X = \{a, b\}$ and $\tau = \{\emptyset, \{a\}, X\}$

Then (X, τ) is T_0 -space. For $a, b \in X$, $a \neq b$ and $G = \{a\} \ni a, \{a\} \not\ni b$.

Example (3.2): The discrete topological space (X, τ) is T_0 -space.

For $\forall x, y \in X, x \neq y$ we have $\{x\}$ is open and contains x but not y

Also, $\{y\}$ is open and contains y but not x

Example (3.3): Let $X = \{a, b\}$ and $\tau = \{\emptyset, X\}$ is not T_0 -space

For $a, b \in X$, $a \neq b$, $\not\exists^{open} G \in \tau$ containing one of the point but not the other.

Example (3.4): Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, \{a\}, \{b, c\}, X\}$

The space (X, τ) is not T_0 -space for $b \neq c$ and $\forall^{open}G \ni b, G \ni c$ also $\Rightarrow (X, \tau)$ is not T_0 -space.

Theorem (3.1):

- (1) The property " (X, τ) is T_0 -space" is hereditary.
- (2) The property " (X, τ) is T_0 -space" is a topological property.

Proof:

(1) Let (X, τ) be a topological space Let (X^*, τ^*) be a topological subspace of (X, τ) We need to show that (X^*, τ^*) is T_0 -space

Let
$$x, y \in X^*$$
, $x \neq y$

$$\Rightarrow x, y \in X, x \neq y$$

Since (X, τ) is T_0 -space

$$\Rightarrow \exists^{open} G \in \tau$$
, say $x \in G$, $y \notin G$

We have
$$\tau^* = \{G^* = G \cap X^* : G \in \tau\}$$

$$x \in G, x \in X^* \Rightarrow x \in G \cap X^* \Rightarrow x \in G^* \in \tau^*$$

$$y \notin G, y \in X^* \Rightarrow y \notin G \cap X^* \Rightarrow y \notin G^* \in \tau^*$$

$$\Rightarrow \exists^{open} G^* \in \tau^*; x \in G^*, y \notin G^* \ \forall x, y \in X^* (x \neq y)$$

$$\Rightarrow$$
 (X^*, τ^*) is T_0 -space.

- \Rightarrow T_0 -space is a hereditary property.
- (2) Let $f: X \to X^*$ be a homeo.

Let
$$(X, \tau)$$
 be T_0 -space

We need to show that (X^*, τ^*) is T_0 -space

Let
$$x^*, y^* \in X^*, x^* \neq y^*$$

Since *f* is onto

$$\exists x, y \in X, x^* = f(x) \land y^* = f(y)$$

Since f is (1-1) and
$$f(x) \neq f(y)$$

$$\Rightarrow x \neq y$$

$$\Rightarrow x, y \in X (x \neq y)$$
 and (X, τ) is T_0 -space

$$\Rightarrow \exists^{open} G \in \tau \ (say) \ x \in G, y \notin G$$

Since f is open

$$\Rightarrow f(G) = G^* \text{ is open in } (X^*, \tau^*)$$

Now,
$$x \in G \implies f(x) \in f(G) \implies x^* \in G^*$$

$$y \notin G \implies f(y) \notin f(G) \implies y^* \notin G^*$$

$$\Rightarrow \exists^{open} \ G^* \in \tau^*; \ x^* \in G^*, y^* \notin G^*$$

$$\Rightarrow (X^*, \tau^*)$$
 is T_0 -space.

 \Rightarrow T_0 -space is a topological property.

Theorem (3.2):

The topological space (X, τ) is T_0 -space iff $\forall x, y \in X \ (x \neq y \Rightarrow \overline{\{x\}} \neq \overline{\{y\}})$.

Proof:

Let
$$\forall x, y \in X \ x \neq y \Rightarrow \overline{\{x\}} \neq \overline{\{y\}}$$

Since
$$\overline{\{x\}} \neq \overline{\{y\}}$$

 $\Rightarrow \exists z \in X$ belong to one of them and not belongs the other

Assume $z \in \overline{\{x\}}, z \notin \overline{\{y\}}$

If $x \in \overline{\{y\}}$

$$\Rightarrow \{x\} \subseteq \overline{\{y\}}$$

$$\Rightarrow \ \overline{\{x\}} \subseteq \overline{\overline{\{y\}}} = \overline{\{y\}}$$

$$\Rightarrow z \in \overline{\{y\}}$$
 C!

So
$$x \notin \overline{\{y\}}$$

$$\Rightarrow x \in \overline{\{y\}}^c$$

Since $\overline{\{y\}}$ is closed then $\overline{\{y\}}^c$ is open.

Thus we obtain an open set contains x and does not contains y

$$\Rightarrow$$
 (X, τ) is T_0 -space

Conversely,

Let (X, τ) is T_0 -space,

We have $\forall x, y \in X (x \neq y)$, $\exists^{open} G \in \tau$, $x \in G$ and $y \notin G$

Thus G^c is closed, $y \in G^c$ and $x \notin G^c$

By definition of $\overline{\{y\}}$ (the intersection of all closed subsets contains $\{y\}$)

Thus $y \in \overline{\{y\}}$

But $x \notin \overline{\{y\}}$ since $x \notin G^c$

$$\therefore \overline{\{x\}} \neq \overline{\{y\}}$$

Definition (3.2): $(T_1 - \text{Space} \quad (\text{Fréchet space}))$

We say that (X, τ) is T_1 -space iff $\forall x, y \in X (x \neq y), \exists^{open} G, H \in \tau$ such that $x \in G, y \notin G \land y \in H, x \notin H$.