Example (3.5): Let $X = \{a, b\}$ and $\tau = \{\emptyset, \{a\}, \{b\}, X\}$

Then (X, τ) is T_1 -space. For $a, b \in X$, $a \neq b$ and $\exists^{open} G = \{a\}, H = \{b\}; a \in G, b \notin G \land a \notin H, b \in H$

Example (3.6): Let $X = \{a, b\}$ and $\tau = \{\emptyset, \{a\}, X\}$

 (X, τ) is not T_1 -space. For $a, b \in X$, $a \neq b$ and $\not\exists^{open} G$, s.t. $b \in G$, $a \notin G$

Example (3.7): The usual topological space (R, τ) is T_1 -space

 $\forall a, b \in R, a \neq b, \exists$ always open sets $G, H, s.t. \ a \in G, b \notin G \ \land \ b \in H, a \notin H$

Corollary (3.1): $(X, \tau) - T_1 \implies (X, \tau) - T_0$

Proof: Let (X, τ) be T_1 -space

$$\Rightarrow \forall x, y \in X (x \neq y), \exists^{open} G, H, s.t. x \in G, y \notin G \land y \in H, x \notin H$$

$$\Rightarrow \ \forall \ x,y \in X \ (x \neq y), \exists^{open} \ G, x \in G, y \notin G \ \land \ \exists^{open} \ H, y \in H, x \notin H$$

$$\Rightarrow \forall x, y \in X (x \neq y), \exists^{open} G, x \in G, y \notin G \land$$

 $\forall \; x,y \in X \; (x \neq y), \exists^{open} \; H,y \in H, x \not\in H$

$$\Rightarrow (X,\tau) - T_0 \wedge (X,\tau) - T_0$$

$$\Rightarrow (X, \tau) - T_0$$

Theorem (3.3):

- (1) The property " $(X, \tau) T_1$ " is hereditary.
- (2) The property " $(X, \tau) T_1$ " is a topological property.

Proof.

(1) Let (X, τ) be a topological space

Let (X^*, τ^*) be a topological subspace of (X, τ)

We need to show that (X^*, τ^*) is T_1 -space

Let
$$x, y \in X^*$$
, $(x \neq y)$

$$\Rightarrow x, y \in X, (x \neq y)$$
 (since $X^* \subset X$)

Since (X, τ) is T_1 -space

 $\Rightarrow \exists G, H \in \tau \text{ such that } x \in G, y \notin G \land x \notin H, y \in H$

We have

$$\tau^* = \{G^* = G \cap X^* : G \in \tau\}$$

$$\tau^* = \{H^* = H \cap X^* : H \in \tau\}$$

$$x \in G, x \in X^* \Rightarrow x \in G \cap X^* \Rightarrow x \in G^*$$

$$y \notin G, y \in X^* \Rightarrow y \notin G \cap X^* \Rightarrow y \notin G^*$$

$$x \notin H, x \in X^* \Rightarrow x \notin H \cap X^* \Rightarrow x \notin H^*$$

$$y \in H, y \in X^* \Rightarrow y \in H \cap X^* \Rightarrow y \in H^*$$

$$\Rightarrow \exists G^*, H^* \in \tau^*; x \in G^*, y \notin G^* \land x \notin H^*, y \in H^*$$

$$\forall x, y \in X^* (x \neq y)$$

$$\Rightarrow$$
 (X^*, τ^*) is T_1 -space.

- \Rightarrow T_1 -space is a hereditary property.
- (2) Let $f:(X,\tau) \to (X^*,\tau^*)$ be a homeo.

Let
$$(X, \tau)$$
 be T_1 -space

Let
$$x^*, y^* \in X^*, x^* \neq y^*$$

Since f is onto

$$\exists x, y \in X, x^* = f(x), y^* = f(y)$$

Since f is (1-1) and $x^* \neq y^*$

$$\Rightarrow x \neq y$$

$$\Rightarrow x, y \in X, x \neq y \text{ and } (X, \tau) \text{ is } T_1\text{-space}$$

$$\Rightarrow \exists G, H \in \tau \text{ s.t. } x \in G, y \notin G \land x \notin H, y \in H$$

Since f is open

$$\Rightarrow f(G) = G^*, f(H) = H^* \text{ is open in } (X^*, \tau^*)$$

Now,
$$x \in G \implies f(x) \in f(G) \implies x^* \in G^*$$

$$y \notin G \Rightarrow f(y) \notin f(G) \Rightarrow y^* \notin G^*$$

$$x \not\in H \ \Rightarrow \ f(x) \not\in f(H) \ \Rightarrow \ x^* \not\in H^*$$

$$y \in H \implies f(y) \in f(H) \implies y^* \in H^*$$

- \Rightarrow $\exists G^*, H^* \in \tau^*; x^* \in G^*, y^* \notin G^* \land x^* \notin H^*, y^* \in H^*$
- \Rightarrow (X^*, τ^*) is T_1 -space.
- \Rightarrow T_1 -space is a topological property.

Theorem (3.4): The topological space (X, τ) is T_1 -space iff $\{x\}$ closed $\forall x \in X$.

Proof:

Let (X, τ) be T_1 -space. Let $p \in X$. We have to show $\{p\}$ is closed.

Let
$$x \in \{p\}^c \implies x \neq p$$

Since (X, τ) is T_1 -space then $\exists^{open} G_x, p \notin G_x$ and $x \in G_x$

Thus
$$x \in G_x \subseteq \{p\}^c$$

$$\therefore \{p\}^c = \bigcup \{G_x : x \in \{p\}^c\}$$

Thus $\{p\}^c$ is open $\Rightarrow \{p\}$ is closed

Conversely:

Let $\{p\}$ is closed $\forall p \in X$

Assume $x, y \in X, x \neq y$

Now, $x \neq y \Rightarrow x \in \{y\}^c \Rightarrow \{y\}^c$ is open and contains x but not contains y

Similarly, $\{x\}^c$ is open, contains y and $x \notin \{x\}^c$

$$\therefore$$
 (X, τ) is T_1 -space

Example (3.8): Let $X = N = \{1, 2, ..., n, n + 1, ...\}$ and $\tau = \{\emptyset, X, \{1, 2, ..., n\}\}$

Then (X, τ) is not T_1 -space. For

Case (1):

 $1,2 \in X$, $(1 \neq 2)$ but every open $G \ni 2$ contains also 1

i.e.
$$\forall^{open} G \ni 2, G \ni 1$$

$$\not\exists^{open} \ G \ni 2, G \not\ni 1$$

 \Rightarrow (X, τ) is not T_1 -space

Case (2):

According to above theorem, we have

 $\forall n \in X, \{n\} \text{ is not closed}$

 \Rightarrow (X, τ) is not T_1 -space

While (X, τ) is T_0 -space for

If $m, n \in X (m \neq n)$ put m < n

$$\exists^{open} \ G = \{1,2,\ldots,m\} \ni m, \ G \not\ni n$$

 $\Rightarrow \forall m, n \in X, (m \neq n), \exists^{open} G \text{ containing one of the points only.}$

Remark (3.1): From the above example we conclude that $T_0 \Rightarrow T_1$.

Example (3.9): Let X = R, $\tau = \{\emptyset, E \subseteq R: E^c \text{ is finite}\}$.

Proof:

Let $p \in R$ by any point

 $\Rightarrow \{p\} \subset X \text{ is finite}$

 $\Rightarrow \{p\}^c \subset X \text{ is open}$

 $\Rightarrow \{p\}$ closed

 \Rightarrow (R, τ) is T_1 -space

Corollary (3.2): Every finite T_1 -space is discrete.

Proof:

Let (X, τ) be finite T_1 -space

We need to show that (X, τ) is discrete

Let $A_i \subset X$

 \Rightarrow A_i is finite

 $\Rightarrow A_i = \bigcup_{i=1}^n \{a_i\}$

Since (X, τ) is T_1 -space

 $\{a_i\}$ is closed $\forall i = 1, 2, ..., n$

 $\Rightarrow A_i = \bigcup_{i=1}^n \{a_i\}$ is closed

 $\Rightarrow \, \forall \, A_i \subset X, \ \, A_i \, {\rm closed} \, \, , \, \, i=1,2,\ldots,n$