Also, $\{a_i\}$ closed $\forall i = 1, 2, ..., n$

- $\Rightarrow \{a_i\}^c$ is open $\forall i = 1, 2, ..., n$
- $\Rightarrow \bigcup_{i=1}^{n} \{a_i\}$ is open
- $\Rightarrow \forall A_i \subset X$, A_i is open
- \Rightarrow (X, τ) is discrete

Definition (3.3): (T_2 -space (Hausdorff Space)) فضاء هاوزدورف

We say that (X, τ) is T_2 -space iff $\forall x, y \in X, x \neq y$, \exists two disjoint open sets G, H, such that $x \in G, y \notin G \land y \in H, x \notin H$.

Example (3.10): Let
$$X = \{a, b\}, \tau = \{\emptyset, \{a\}, \{b\}, X\}$$

We have (X, τ) is T_2 -space. For

We have $a, b \in X, a \neq b$

 \exists two disjoint open sets $G = \{a\}, H = \{b\}$ with $a \in G, b \in H, \{a\} \cap \{b\} = \emptyset$

Remark (3.2): From the above definition, we conclude that $T_2 \Rightarrow T_1 \Rightarrow T_0$ But $T_1 \Rightarrow T_2$ as in the following example:

Example (3.11): Let
$$X = R$$
, $\tau = \{\emptyset, E \subset R: E^c \text{ is finite}\}$.

Solution: We have see that (X, τ) is T_1 -space

We need to show that (X, τ) is not T_2 -space

Assume that (X, τ) is T_2 -space

$$\forall x, y \in X \ (x \neq y), G, H \ with G \cap H = \emptyset, x \in G, y \in H$$

But
$$G \cap H = \emptyset$$

$$\Rightarrow G \subset H^c$$

 \Rightarrow Contradiction [since G is an infinite set and H^c is finite]

Therefore (X, τ) is not T_2 -space.

Theorem (3.5):

- (1) The property (X, τ) T_2 -space is hereditary.
- (2) The property (X, τ) T_2 -space is topological property.

Proof:

(1) Let (X, τ) be a T_2 -space

We need to show that (X^*, τ^*) is T_2 -space

Let
$$x, y \in X^*, x \neq y$$

But
$$X^* \subset X$$

$$\Rightarrow x, y \in X \ (x \neq y)$$

Since (X, τ) is T_2 -space

 \Rightarrow \exists two disjoint open sets $G, H \in \tau, x \in G, y \in H$

Since
$$(X^*, \tau^*) \subset (X, \tau)$$

$$\Rightarrow \tau^* = \{G^* = G \cap \tau^* : G \in \tau\}$$

We have $G \in \tau \implies G^* = G \cap X^*$ is in τ^*

$$H \in \tau \implies H^* = H \cap X^* \text{ is in } \tau^*$$

Since $x \in G \cap X^* \Rightarrow x \in G^*$

$$y \in H \cap X^* \ \Rightarrow \ y \in H^*$$

We have $G^* \cap H^* = (G \cap X^*) \cap (H \cap X^*)$

$$= (G \cap H) \cap X^* = \emptyset \cap X^* = \emptyset$$

Hence, $\forall x, y \in X^*, x \neq y$, \exists two disjoint open sets $G^*, H^* \in \tau^*$ s.t.

$$x \in G^* \land y \in H^*$$

$$\Rightarrow$$
 (X^*, τ^*) is a T_2 -space

 \Rightarrow T_2 -space is a hereditary property.

(2) Let $f:(X,\tau) \to (X^*,\tau^*)$ be a homeo.

Let
$$(X, \tau)$$
 be T_2 -space

We need to show that (X^*, τ^*) be T_2 -space

Let
$$x^*, y^* \in X^* \ (x^* \neq y^*)$$

Since f is onto

$$\exists x, y \in X \text{ s.t. } x^* = f(x), y^* = f(y)$$

Since
$$f$$
 is (1-1) $\Rightarrow x^* \neq y^* \Rightarrow x \neq y$

$$\Rightarrow x, y \in X \ (x \neq y) \text{ and } (X, \tau) \text{ is } T_1\text{-space}$$

$$\Rightarrow$$
 \exists two disjoint G, H s.t. $x \in G, y \in H$

Since f is open

$$\Rightarrow f(G) = G^*, f(H) = H^* \text{ is open in } (X^*, \tau^*)$$

And
$$G^* \cap H^* = f(G) \cap f(H) = f(G \cap H) = f(\emptyset) = \emptyset$$

$$\Rightarrow G^* \cap H^* = \emptyset$$

Now,
$$x \in G \implies f(x) \in f(G) \implies x^* \in G^*$$

$$y \in H \implies f(y) \in f(H) \implies y^* \in H^*$$

- ∴ ∃ two disjoint open sets G^* , $H^* \in \tau^*$ s.t. $x \in G^*$ $\land y \in H^*$
- $\Rightarrow (X^*, \tau^*)$ is T_2 -space
- \Rightarrow T_2 -space is a topological property.

Theorem (3.6): A compact set in a T_2 -space is closed.

Proof: Let (X, τ) be a T_2 -space

Let $A \subset X$ be compact

We need to show that A is closed, that is A^c open

We show that A^c is open

Let
$$x \in A^c \implies x \neq y, \forall y \in A$$

We have $x, y \in X$ $(x \neq y)$ and (X, τ) is T_2 -space

 \Rightarrow \exists two disjoint open sets G_x , H_y s.t. $x \in G_x$, $y \in H_y$

We have the family of open sets $\{H_y : y \in A\}$ is an open cover of $A \{A \subset A\}$

$$\bigcup_{y\in A}H_y\}$$

But A is compact

$$\Rightarrow H_{y_1}, H_{y_2}, H_{y_3}, \dots, H_{y_n}$$
 form a finite subcover of A

$$\Rightarrow A \subset \bigcup_{i=1}^n H_{y_i}$$

Now, let
$$G = \bigcap_{i=1}^n G_{x_i}$$
 and $H = \bigcup_{i=1}^n H_{y_i}$

We have
$$G = \bigcap_{i=1}^n G_{x_i} \subset A^c$$
 and $x \in G$

$$\Rightarrow x \in G \subset A^c$$

$$\forall x \in A^c$$
, $\exists^{open} G \ni x$ and $x \in G \subset A^c$

$$\Rightarrow A^c \text{ open } \Rightarrow A \text{ closed}$$

.....

Corollary (3.3): Let (X, τ) is a compact topological space and (X^*, τ^*) is T_2 -space. If $f: (X, \tau) \to (X^*, \tau^*)$ is a continuous, one-to-one and onto function. Then f is topological homeomorphism.

Proof:

Let $f:(X,\tau)\to (X^*,\tau^*)$ be continuous, one-to-one and onto function.

Let (X, τ) be compact and (X^*, τ^*) be T_2 -space

Since f is continuous, one-to-one and onto function, so to prove that f is homeo, we need to show that f is open

Let $G \subset X$ be any open set

 \Rightarrow $G^c \subset X$ is closed

But (X, τ) is compact

 \Rightarrow $G^c \subset X$ is compact

 $\Rightarrow f(G^c) \subset X^*$ is compact

Since (X^*, τ^*) is T_2 -space

 $\Rightarrow f(G^c)$ closed

 $\Rightarrow f(G) \text{ is open}$ (since $f(G^c) = (f(G))^c \text{ closed}$)

 \Rightarrow f is open

 \Rightarrow f is homeo.

Theorem (3.7): Every metric space is T_2 -space.

Proof:

Let (M, d) be a metric

Let $x, y \in M, x \neq y$