We have
$$G = \bigcap_{i=1}^n G_{x_i} \subset A^c$$
 and $x \in G$

$$\Rightarrow x \in G \subset A^c$$

$$\forall x \in A^c$$
, $\exists^{open} G \ni x$ and $x \in G \subset A^c$

$$\Rightarrow A^c \text{ open } \Rightarrow A \text{ closed}$$

.....

Corollary (3.3): Let (X, τ) is a compact topological space and (X^*, τ^*) is T_2 -space. If $f: (X, \tau) \to (X^*, \tau^*)$ is a continuous, one-to-one and onto function. Then f is topological homeomorphism.

Proof:

Let $f:(X,\tau)\to (X^*,\tau^*)$ be continuous, one-to-one and onto function.

Let (X, τ) be compact and (X^*, τ^*) be T_2 -space

Since f is continuous, one-to-one and onto function, so to prove that f is homeo, we need to show that f is open

Let $G \subset X$ be any open set

 \Rightarrow $G^c \subset X$ is closed

But (X, τ) is compact

 $\Rightarrow G^c \subset X$ is compact

 $\Rightarrow f(G^c) \subset X^*$ is compact

Since (X^*, τ^*) is T_2 -space

 $\Rightarrow f(G^c)$ closed

 $\Rightarrow f(G) \text{ is open}$ (since $f(G^c) = (f(G))^c \text{ closed}$)

 \Rightarrow f is open

 \Rightarrow f is homeo.

Theorem (3.7): Every metric space is T_2 -space.

Proof:

Let (M, d) be a metric

Let $x, y \in M, x \neq y$

$$x \neq y \Rightarrow d(x,y) = \varepsilon > 0$$

Consider two open sets (balls) $B_{\frac{\varepsilon}{3}}(x)$, $B_{\frac{\varepsilon}{3}}(y)$

To show that $B_{\frac{\varepsilon}{2}}(x) \cap B_{\frac{\varepsilon}{2}}(y) = \emptyset$

Assume that $B_{\frac{\varepsilon}{3}}(x) \cap B_{\frac{\varepsilon}{3}}(y) \neq \emptyset$

$$\Rightarrow \exists z \in M \text{ and } z \in B_{\frac{\varepsilon}{3}}(x) \cap B_{\frac{\varepsilon}{3}}(y)$$

$$\Rightarrow z \in B_{\frac{\varepsilon}{3}}(x) \land z \in B_{\frac{\varepsilon}{3}}(y)$$

$$\Rightarrow d(x,z) < \frac{\varepsilon}{3} \land d(y,z) < \frac{\varepsilon}{3}$$

Now, $d(x, y) \le d(x, z) + d(z, y)$

$$\Rightarrow \varepsilon < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \frac{2\varepsilon}{3} \Rightarrow \varepsilon < \frac{2\varepsilon}{3}$$
 contradiction

$$\therefore B_{\frac{\varepsilon}{3}}(x) \cap B_{\frac{\varepsilon}{3}}(y) = \emptyset$$

Then (M, d) is T_2 -space

Theorem (3.8): In T_2 -space, it is possible to separate, any point and a compact subset that does not contain the point by disjoint open sets.

Proof:

Let (X, τ) be a T_2 -space

Let $E \subset X$ be compact

Let $x \in X$, $x \notin E$ be any point

But $x \notin E \implies x \neq y, \forall y \in E$

Since (X, τ) is T_2 -space and $x, y \in X (x \neq y)$

 \Rightarrow \exists two disjoint open sets G_x , H_y such that $x \in G_x \land y \in H_y$

We have $E \subset \bigcup_{y \in E} H_y$

 $\Rightarrow \{H_y : y \in E\}$ is an open cover of E

Since E is a compact set, then \exists a finite subcover of E s.t. $E \subset \bigcup_{i=1}^n H_{y_i} = H$

 $\Rightarrow E \subset H$

Since $G_x \cap H_{y_i} = \emptyset$, $\forall i = 1, 2, ..., n$

i.e.
$$(G_x \cap H_{y_1}) \cup (G_x \cap H_{y_2}) \cup ... (G_x \cap H_{y_n}) = \emptyset$$

$$\Rightarrow G_{x} \cap H = \emptyset$$

$$\Rightarrow E \subset H \land x \in G_x \text{ and } G_x \cap H = \emptyset$$

Definition (3.4): If τ and τ^* two topologies defined on X { $i.e.(X,\tau)$ and (X,τ^*) are topological spaces}. We say that τ is **finer** (smaller) than τ^* , denoted by $\tau \leq \tau^*$, if each element of τ is an element of τ^* , τ^* is **coarser** than τ .

Example (3.12): If $\tau = \{\emptyset, X\}$ weak and $\tau^* = \{\emptyset, A \subset X\}$ discrete. τ is finer than τ^* .

Example (3.12): If (X, τ) is T_i -space, $\forall i = 0,1,2$ and τ is finer than τ^* , then (X, τ^*) is T_i -space, $\forall i = 0,1,2$.

Solution:

Let (X, τ) be T_0 -space

$$\Rightarrow \forall x, y \in X, x \neq y, \exists^{open} G \text{ s.t. } x \in G, y \notin G$$

Since $\tau \leq \tau^*$, that is every element of τ is an element of τ^*

$$\Rightarrow G \in \tau^* \text{ and } \forall x, y \in X, x \in G, y \notin G$$

$$\Rightarrow$$
 (X, τ^*) is T_0 -space

Let
$$(X, \tau)$$
 is T_1 -space $\Rightarrow \forall x, y \in X, (x \neq y)$

$$\exists \; G, H \; s. \, t. \, x \in G, y \not \in G \; \land \; y \in H, x \not \in H$$

Since $\tau \leq \tau^*$

$$\Rightarrow$$
 $G, H \in \tau^*$ and $\forall x, y \in X, x \in G, y \notin G \land y \in H, x \notin H$

$$\Rightarrow$$
 (X, τ^*) is T_1 -space

Let
$$(X, \tau)$$
 is T_2 -space $\Rightarrow \forall x, y \in X (x \neq y)$

 \exists two disjoint open sets G, H s.t. $x \in G, y \notin G \land y \in H, x \notin H$

Since
$$\tau \le \tau^* \Rightarrow G, H \in \tau^*, \forall x, y \in X, x \in G, \land y \in H$$
, s.t. $G \cap H = \emptyset$

$$\Rightarrow$$
 (X, τ^*) is T_2 -space

Definition (3.5): Let (X, τ) be a topological space. Let $\{x_n\}_{n \in \mathbb{N}}$ be a **sequence** of a points of X. We say that $\{x_n\}_{n \in \mathbb{N}}$ convergence to $x \in X$ iff $\forall^{open} G \ni x$, $\exists N(G) \in \mathbb{N}, x_n \in G, \forall n \geq N(G)$.

Example (3.12): We have (N, τ) with $\tau = \{\emptyset, N, \{n, n+1, n+2, \dots\}\}$ is topological space and $\{x_n\}_{n\in\mathbb{N}}$ is sequence of points of N=X. According to the above definition we see that $\{n\} \to 1, \{n\} \to 2, \dots, \{n\} \to n, \forall n \in \mathbb{N}$.

Theorem (3.9): In T_2 -space, the convergent sequences converges to a unique point.

Proof:

Let (X, τ) be T_2 -sapce

We need to show that $\{x_n\}$ be a converges to a unique point.

Assume that $\{x_n\}$ converges to $x \land \{x_n\}$ converges to $y \ (x \neq y)$

Now, $x, y \in X$, $x \neq y$ and (X, τ) is T_2 -space

 \Rightarrow \exists two disjoint open sets $G, H; x \in G \land y \in H$

Now,
$$(x_n \to x) \Rightarrow \forall^{open} \ G \ni x, \exists \ N_1 \in \mathbb{N}, x_n \in G, \forall \ n \ge N_1$$

 $(x_n \to y) \Rightarrow \forall^{open} \ H \ni y, \exists \ N_2 \in \mathbb{N}, x_n \in H, \forall \ n \ge N_2$

Let $N = max(N_1, N_2)$

$$\forall \; G \ni x, \exists \; N \in \mathbb{N}, x_n \in G, \forall \; n \geq N$$

$$\forall \ H \ni y, \exists \ N \in \mathbb{N}, x_n \in H, \forall \ n \geq N$$

$$\Rightarrow \ x_n \in G \cap H, \forall^{open} \ G \ni x, \forall^{open} \ H \ni y$$

 $\Rightarrow G \cap H \neq \emptyset$ Contradiction

$$\therefore \{x_n\} \to \{x\}$$
 unique

Remark (3.3): The converse of the above theorem is not true is general

That is: $(\{x_n\} \to x \text{ (unique)}) \text{ in } (X, \tau) \implies (X, \tau) \text{ is } T_2\text{-space.}$

Example (3.13): Let X = R, $\tau = \{\emptyset, E \subseteq R, E^c \text{ is finite}\}$

The topological space (X, τ) is T_1 -space

 $x,y \in X, x \neq y$

- $\{x\}$ finite $\Rightarrow \{x\}^c \in \tau \land y \in \{x\}^c, x \notin \{x\}^c$
- $\{y\}$ finite $\Rightarrow \{y\}^c \in \tau \land x \in \{y\}^c, y \notin \{y\}^c$

The topological space is not T_2 -space

Every sequence in (R, τ) if convergent it converges to a unique point.
