Chapter Four الفضاءات المنتظمة والفضاءات السوية Regular and Normal Spaces

الفضاء المنتظم (Regular Space) الفضاء المنتظم

We say that (X, τ) is **regular space** denoted by [R] if $\forall^{closed} F \subset X, \forall x \in X, x \notin F, \exists$ disjoint open sets G, H with $F \subset G \land x \in H$.

Example (4.1): Let $X = \{a, b, c\}$, $\tau = \{\emptyset, \{a\}, \{b, c\}, X\}$. Discuss whether (X, τ) is [R] or not.

Solution: The closed sets are: X, $\{b, c\}$, $\{a\}$, \emptyset

- (i) $F = \{b, c\}$ and $a \notin F$, we have $G = \{b, c\}$ and $H = \{a\}$ are disjoint open set with $F \subset G \land a \in H$
- (ii) $F = \{a\}$ and $b, c \notin F$

We have $G = \{a\}$ and $H = \{b, c\}$ are disjoint open set with $F \subset G \land b \in H$ Also, $F \subset G \land c \in H$

Hence, $\forall^{closed} \ F \subset X, \forall \ x \notin F, \exists \ disjoint \ open \ sets \ G, H \ with \ F \subset G \ \land \ x \in H$

 \Rightarrow (X, τ) is [R]

Theorem (4.1):

- (1) The property (X, τ) is [R] is hereditary.
- (2) The property (X, τ) is [R] is a topological property.

Proof:

(1) Let (X, τ) be [R]

Let (X^*, τ^*) be a topological subspace of (X, τ)

We need to show that (X^*, τ^*) is [R]

Let F^* be closed set in X^*

Let $x \in X^*$ and $x \notin F^*$

We have $F^* = F \cap X^*$

$$x \in X^*, x \notin F^* \Rightarrow x \notin F$$

Now, F closed set in X, $x \notin F$ and (X, τ) is [R]

 \exists disjoint open sets G, H s.t. $F \subset G \land x \in H$

We have $G^* = G \cap X^*$, $H^* = H \cap X^*$

Since G, H are open sets in (X, τ)

 $\Rightarrow G^*, H^*$ are open set in (X^*, τ^*)

Now,
$$G^* \cap H^* = (G \cap X^*) \cap (H \cap X^*)$$

= $(G \cap H) \cap X^* = \emptyset \cap X^* = \emptyset$

Since $x \in X^*$, $x \in H \implies x \in H^*$

and $F \subset G$

$$\Rightarrow F \cap X^* \subset G \cap X^*$$

$$\Rightarrow F^* \subset G^*$$

$$\Rightarrow (X^*, \tau^*)$$
 is $[R]$

 \Rightarrow [R] is a hereditary property.

(2) Let $f:(X,\tau) \to (X^*,\tau^*)$ be a homeo.

Let
$$(X, \tau)$$
 is $[R]$

Let $F^* \subset X^*$ be a closed subset, and $x^* \in X^*$ such that $x^* \notin F^*$

Since *f* is continuous

$$\Rightarrow F = f^{-1}(F^*)$$
 is a closed set in X (i.e. $f(F) = F^*$)

Since f onto and $x^* \in X^*$

 $\exists x \in X$, such that $f(x) = x^*$

Since f is (1-1) and $x^* \notin F^*$

$$\Rightarrow f(x) \notin F^*$$

$$\Rightarrow x \notin f^{-1}(F^*) = F$$

Now, F closed set in X, $x \notin F$ and (X, τ) is [R]

 \Rightarrow \exists disjoint open sets G, H s.t. $F \subset G \land x \in H$

Since *f* is open

$$\Rightarrow G^* = f(G)$$
 and $H^* = f(H)$ are open in X^*

$$G^* \cap H^* = f(G) \cap f(H)$$
$$= f(G \cap H) = f(\emptyset) = \emptyset$$

Now,
$$F \subset G \implies f(F) \subset f(G) \implies F^* \subset G^*$$

 $x \in H \implies f(x) \in f(H) \implies x^* \in H^*$

- ⇒ \forall closed sets F^* in X^* , and $\forall x^* \notin F^*$,

 ∃ disjoint open sets G^* , H^* with $F^* \subset G^* \land x^* \in H^*$
- $\Rightarrow (X^*, \tau^*) \text{ is } [R]$
- \Rightarrow [R] is a topological property.

Definition (4.2): (T_3 - Space)

We say that (X, τ) is T_3 -space if (X, τ) is T_1 -space and [R].

Example (4.2): Let
$$X = \{a, b\}, \tau = \{\emptyset, \{a\}, \{b\}, X\}$$

Discuss whether (X, τ) is T_3 -space or not.

Solution: The closed sets are: X, $\{b\}$, $\{a\}$, \emptyset

- (i) $F = \{b\}$ and $b \notin F$, we have $G = \{b\}$ and $H = \{a\}$ are disjoint open set with $F \subset G \land a \in H$
- (ii) $F = \{a\}$ and $b \notin F$

We have $G = \{a\}$ and $H = \{b\}$ are disjoint open set with $F \subset G \land b \in H$ Hence, $\forall^{closed} \ F \subset X, \forall \ x \notin F$, \exists disjoint open sets G, H with $F \subset G \land x \in H$

$$\Rightarrow (X, \tau) \text{ is } [R]$$

Also, (X, τ) is T_1 -space, because for $a, b \in X$, $a \neq b$ and $\exists^{open} G = \{a\}$, $H = \{b\}$; $a \in G, b \notin G \land a \notin H, b \in H$

$$\Rightarrow$$
 (X, τ) is T_3 -space
