Logical Design Lecture 11

In this lesson

- Karnaugh Map definition.
- Advantages and Disadvantages of Karnaugh Map.
- Grouping rules of K-map variables.
- Examples

Karnaugh Map

• A Karnaugh map (K-map) is a method for minimising Boolean expressions without having to apply Boolean algebra theorems and equation manipulations by translating a truth table to its equivalent logic circuit in a simple orderly process, as presented by Maurice Karnaugh in 1953.

Advantages and Disadvantages of Karnaugh Map

Advantages of K-map are:

- 1. K-map simplification does not demand for the knowledge of Boolean algebraic theorems.
- 2. It requires a smaller number of steps when compared to algebraic minimization technique.
- 3. It is easy to convert a truth table to k-map and k-map to Sum of Products form equation.
- 4. The K-map method is faster and more efficient than other simplification techniques of Boolean algebra.

Disadvantages of K-map are:

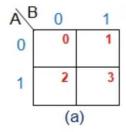
- 1. Complexity of K-map simplification process increases with the increase in the number of variables
- 2. The minimum expression obtained might not be unique

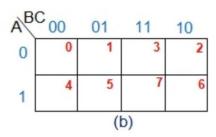
Karnaugh Map

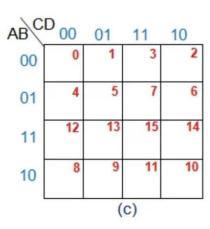
In general, if there are n inputs, then the corresponding K-map has to be of 2ⁿ cells.

For example:

- if the number of input variables is **2**, then we have to consider a K-map with 4 (=2²) cells
- while if there are **3** input variables, then we require an 8 (=2³) cell K-map,
- similarly for 4 inputs one gets 16 (=2⁴)
 cell K-map and so on.







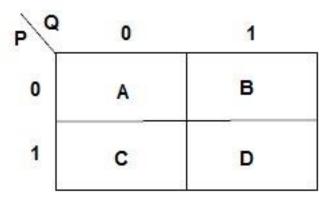
Karnaugh Maps for (a) Two Variables (b) Three Variables (c) Four Variables

Exapmle – two variable map

For the following truth table:

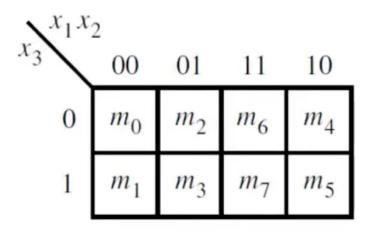
Р	Q	output
0	0	А
0	1	В
1	0	С
1	1	D

The K-map for the truth table:

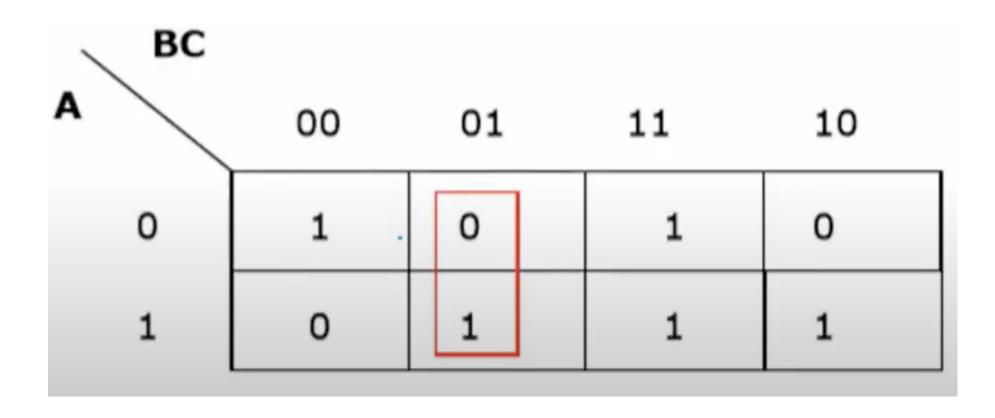


Exapmle – three variable map

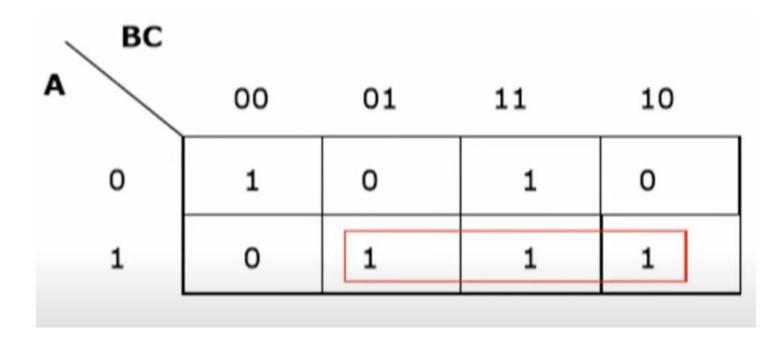
x_1	x_2	x_3	
0	0	0	m_0
0	0	1	m_1
0	1	0	m_2
0	1	1	$.m_3$
1	0	0	m_4
1	0	1	m_5
1	1	0	m_6
1	1	1	m_7



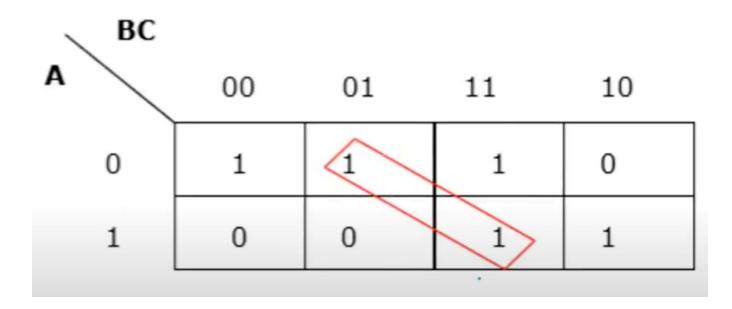
Rule 1: Groupe should not contains any Zeros



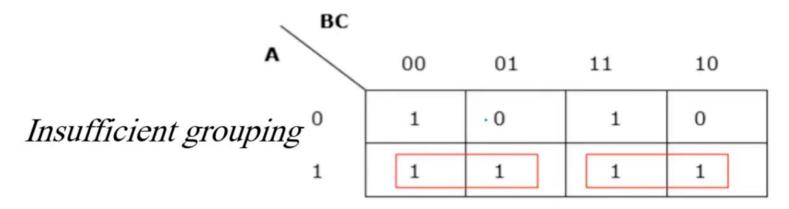
Rule 2: Groups must contain 2^n cells (n = 0,1,2,3,...)

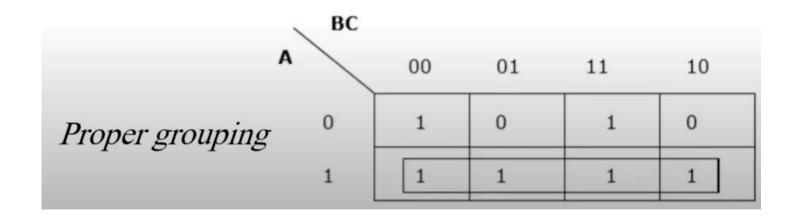


Rule 3: Grouping must be horizontal or vertical but not diagonal.

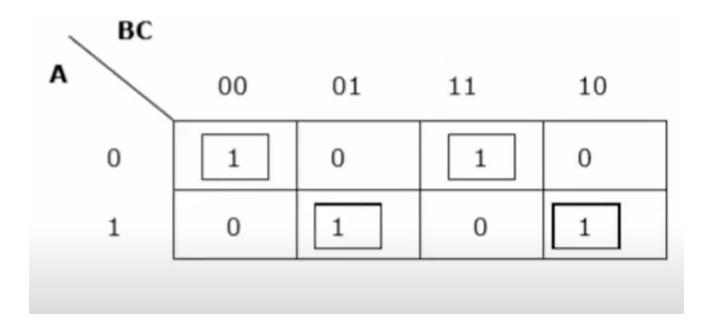


Rule 4: Groups must cover as large as possible

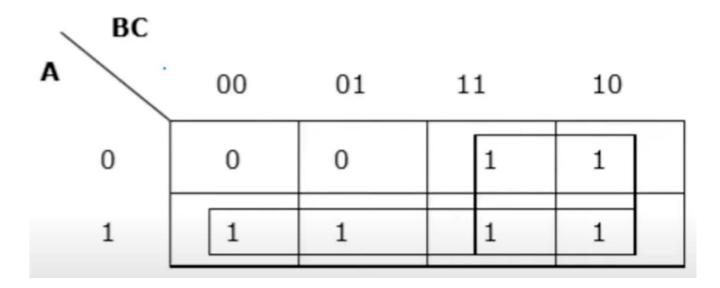




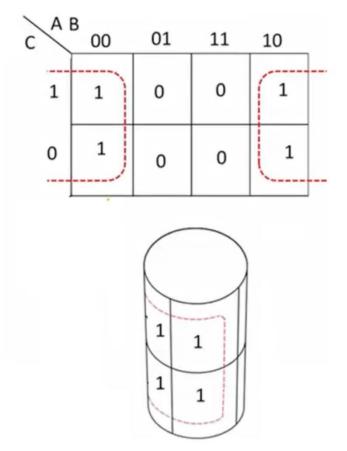
Rule 5: if 1 of any cell cannot be grouped with any other cell, then it will act as a group itself



Rule 6: Groups may overlap but there should be as few groups as possible.



Rule 7: The leftmost cell/ cells can be grouped with the rightmost cell/cells and the topmost cell/ cells can be grouped with the bottommost cell/cells.



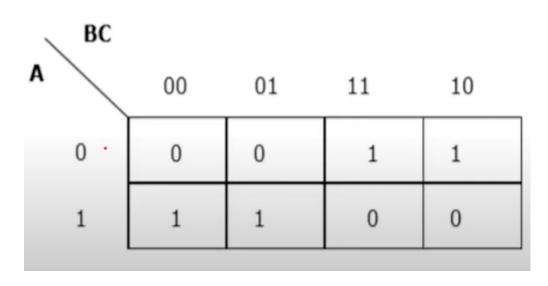
Example

Simplify the following boolean expression using k-map method:

$$F(A,B,C) = \bar{A}BC + \bar{A}B\bar{C} + A\bar{B}\bar{C} + A\bar{B}C$$

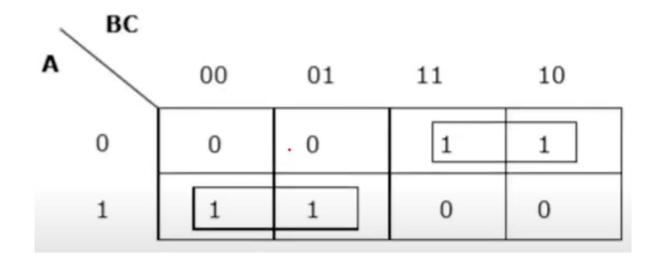
Solution: Creat the truth table first then k-map

Inputs			Output
Α	В	С	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0



Example – continoued

Now the 1s will be gouped accourding the above rules

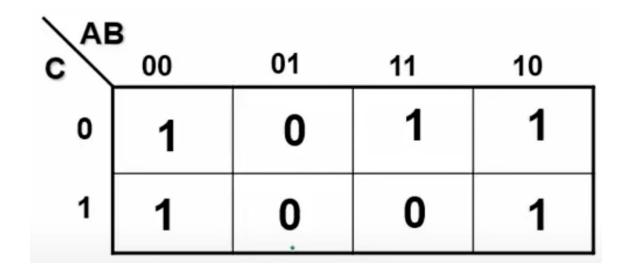


$$F(A,B,C) = \bar{A} B + A \bar{B}$$

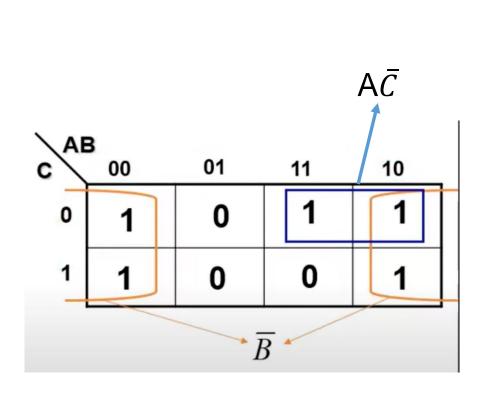
Exapmle

Using k-map to derive the minimal SOP for the output Y(A,B,C) of the given truthtable below:

	Output		
Α	В	C	Υ
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0



Example – continoued



$$Y = \bar{B} + A \bar{C}$$

4 variables K-maps

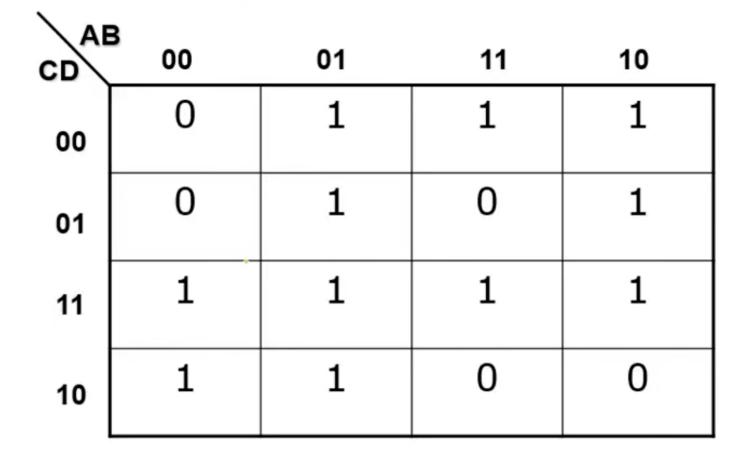
Number of Cells = 2^4 =16

CD AE	00	01	11	10
00	0	4	12	8
01	1	5	13	9
11	3	7	15	11
10	2	6	14	10

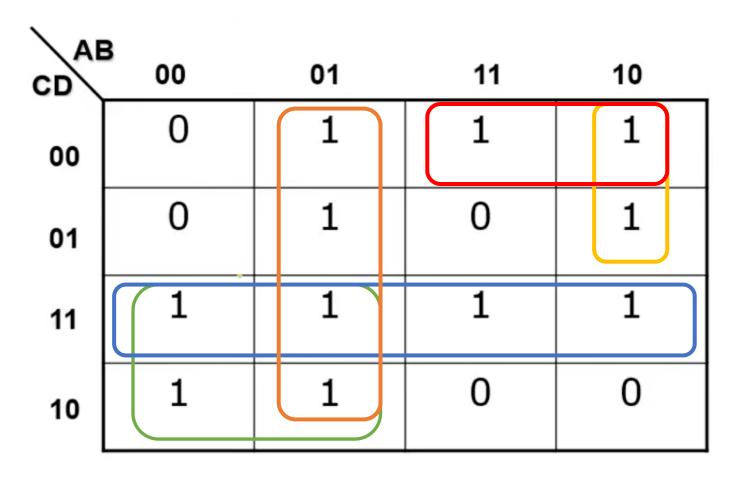
Exapmle

Α	В	С	D	F
0	0	0	0	0
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	0
1	0	1	1	1
1	1	0	0	1
1	1	0	1	0
1	1	1	0	0
1	1	1	1	1

Using k-map to derive the minimal SOP for the output F(A,B,C,D) of the given truthtable:



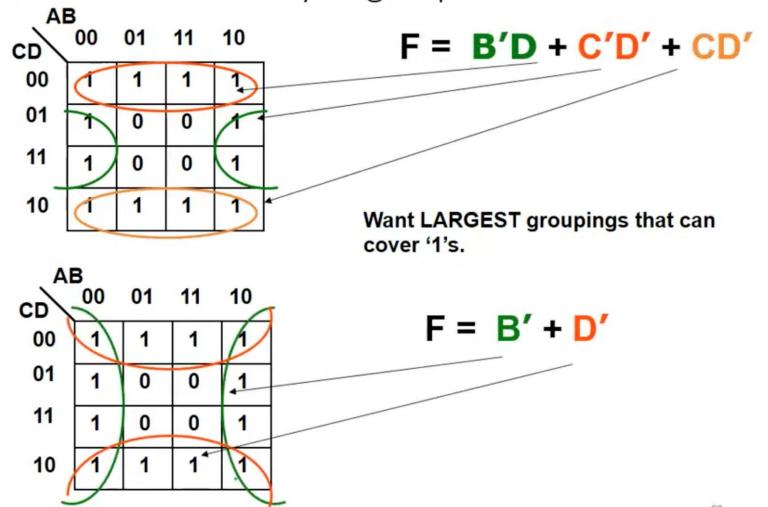
Example – continoued



$$F = \bar{A}C + CD + \bar{A}B + A\bar{B}\bar{C} + A\bar{C}\bar{D}$$

Example of different types of grouping

More than one way to group.....



Summary of Grouping Rules

- A group can only be horizontal or vertical, not diagnonal
- A group must contain 2n of once (1,2,3,8,)
- Each group shouls be as large as possible
- Groups may overlap
- Groups may warp around a table
- Goups should be as few as possible

Home work

Example: Using K-map, derive minimal SOP for the output Y(A,B,C) whose truth table is given below:

Α	В	С	Υ
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	. 1
1	0	1	1
1	1	0	1
1	1	1	1

Home work

Example: for the following K-map, derive minimal SOP.

