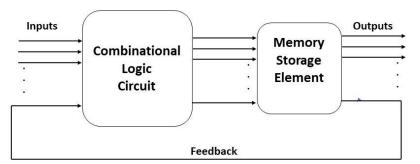
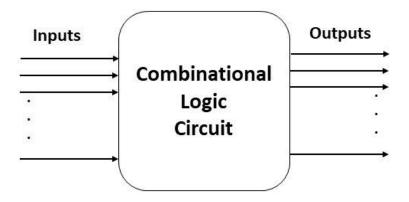

Logical Design Lecture 12

Digital circuits

Combinantial circuit


 Output of combinantial circuit based on the combinantial of present input only.

- No memory
- Ex: encoder, decoder, multiplexer and demultiplexer, adder, subtractor.


Sequential circuit

Output of sequential circuit depends on the current input and a previous output

- Feedback is present
- Memory is present
- Ex: flipflop, registers and counters

Combinational Circuits

Connecting logical gates together to produce a specified output with no storage involved.

Combinational Circuits

Combinational circuits are divided to three main parts:

1. Arithmetic and logical function

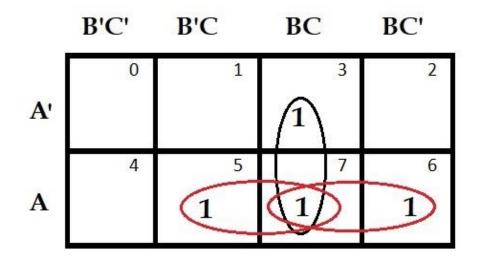
Adder, subtractor and comparator.

2. Code convertors

Binary, cray and BCD

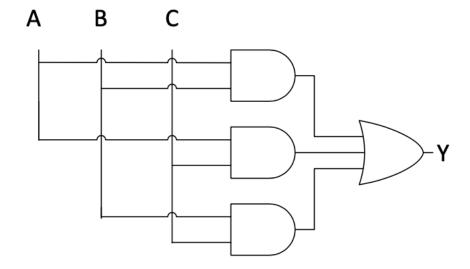
3. Data transmission

Encoder, Decoder, Multiplexer and Demultiplexer.


Design a combinational circuit

Example: Design a **combinational circuit** with three variables that will produce a logic 1 output when more than one input variable is at logic 1.

A	В	C	Y		
0	0	0	0		
0	0	1	0		
0	1	0	0		
0	1	1	1		
1	0	0	0		
1	0	1	1		
1	1	0	1		
1	1	1	1		


$$Y = \overline{A}BC + A\overline{B}C + AB\overline{C} + ABC$$

Example - continued

After simplification as follows:

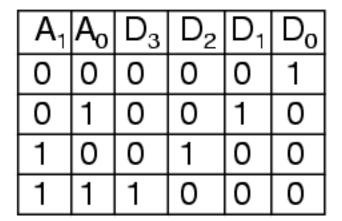
$$Y = AC + AB + BC$$

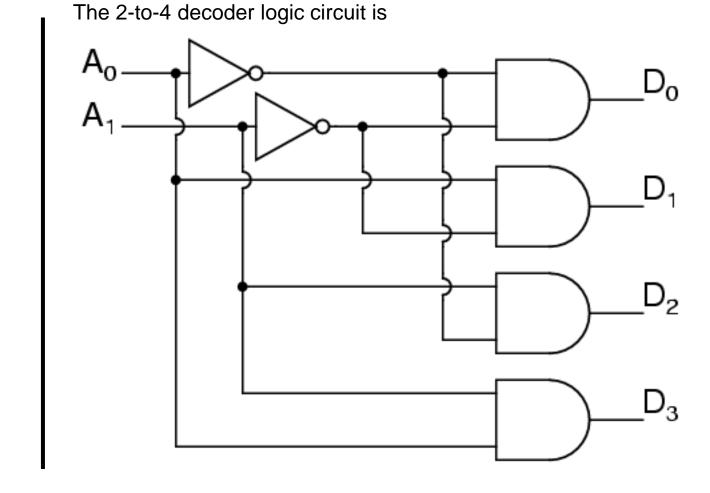
Decoder

A **decoder** is a <u>combinational logic circuit</u> that is used to change the code into a set of signals. It is called a decoder because it does the reverse of encoding. decoder which takes an n-digit binary number and decodes it into 2ⁿ data lines.

The simplest is the 1-to-2 line decoder. The truth table is:

Α	D_1	D_{o}
0	0	1
1	1	0

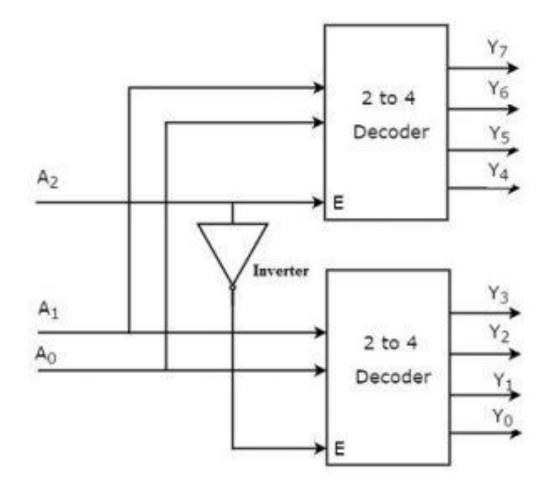

A is the address and D is the data-line. D₀ is NOT A and


D₁ is A. The circuit looks like

2-to-4 Line Decoder

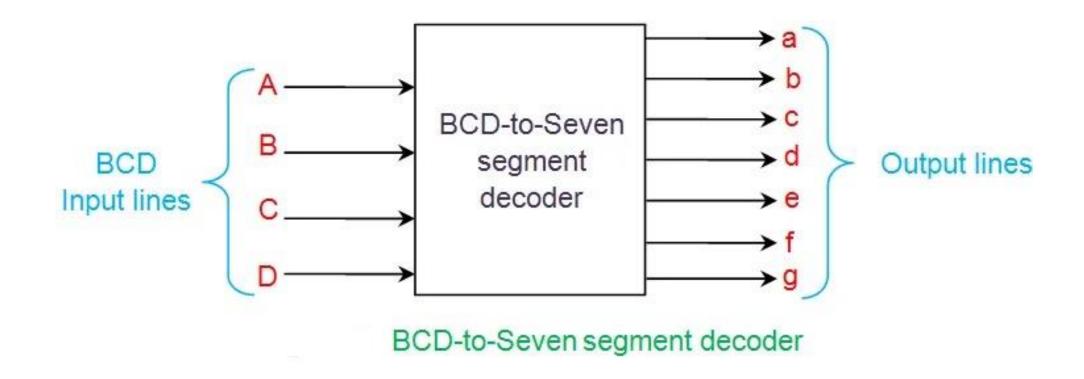
The truth table is

Exercise: Build a 3-to-8 decoders using 2-to-4 decoders.


The implementation of this 3 line to 8 line decoder can be done using two 2 lines to 4 line decoders. We have discussed above that 2 to 4 line decoder includes two inputs and four outputs.

So, in 3 lines to 8 line decoder, it includes three inputs like A2, A1 & A0 and 8 outputs from Y7 – Y0. In addition to input pins, the decoder has a enable pin. This enables the pin when negated, to make the circuit inactive.

Exercise: Build a 3-to-8 decoders using 2-to-4 decoders.

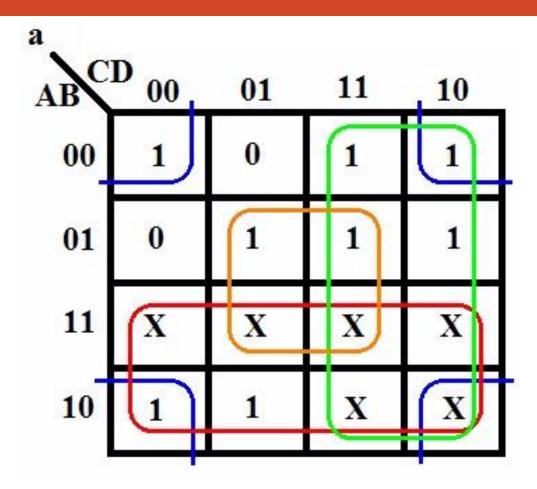

The implementation of this 3 line to 8 line decoder can be done using two 2 lines to 4 line decoders. We have discussed above that 2 to 4 line decoder includes two inputs and four outputs.

So, in 3 lines to 8 line decoder, it includes three inputs like A2, A1 & A0 and 8 outputs from Y7 – Y0. In addition to input pins, the decoder has a enable pin. This enables the pin when negated, to make the circuit inactive.

BCD - to - Seven Segment Decoder (BCD-to-Decimal)

BCD to seven segment decoder is a circuit used to convert the input BCD into a form suitable for the display. It has four input lines (A, B, C and D) and 7 output lines (a, b, c, d, e, f and g) as shown in the Figure bellow:

BCD - to - Seven Segment Decoder

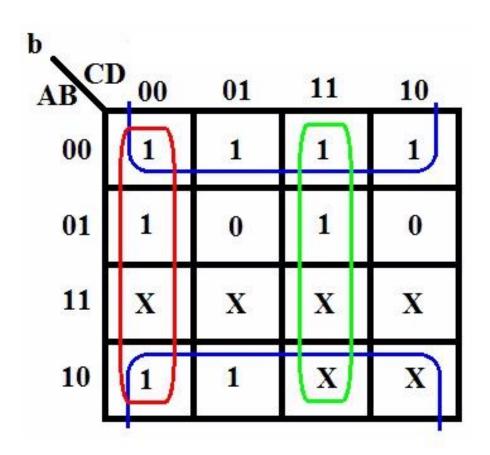

This table indicates the segments which are to be driven high to obtain certain decimal digit at the output of the seven-segment display.

Explanation:

For combination where all the inputs (A, B, C and D) are zero; the output lines are a = 1, b = 1, c = 1, d = 1, e = 1, f = 1 and g = 0. As a result, 7 segment display shows 'zero' as output.

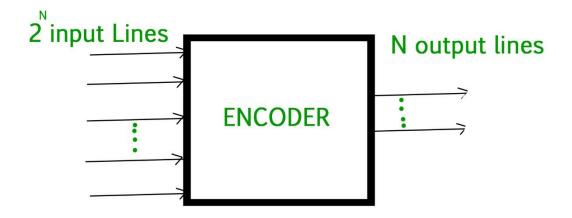
Decimal	Input lines				Output lines							Display	
Digit	A	В	C	D	a	b	C	d	е	f	g	pattern	
0	0	0	0	0	1	1	1	1	1	1	0	8	
1	0	0	0	1	0	1	1	0	0	0	0	8	
2	0	0	1	0	1	1	0	1	1	0	1	8	
3	0	0	1	1	1	1	1	1	0	0	1	В	
4	0	1	0	0	0	1	1	0	0	1	1	8	
5	0	1	0	1	1	0	1	1	0	1	1	8	
6	0	1	1	0	1	0	1	1	1	1	1	8	
7	0	1	1	1	1	1	1	0	0	0	0	8	
8	1	0	0	0	1	1	1	1	1	1	1	8	
9	1	0	0	1	1	1	1	1	0	1	1	8	

K- map for a

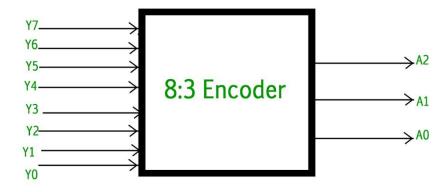


$$a = A + C + BD + \overline{B}\overline{D}$$

K- map for b


$$b = \overline{B} + \overline{C}\overline{D} + CD$$

Home work: k-map for c, d, e, f, g


Encoder

An Encoder is a **combinational circuit** that performs the reverse operation of Decoder. It has maximum of **2**ⁿ **input lines** and **'n' output lines**.

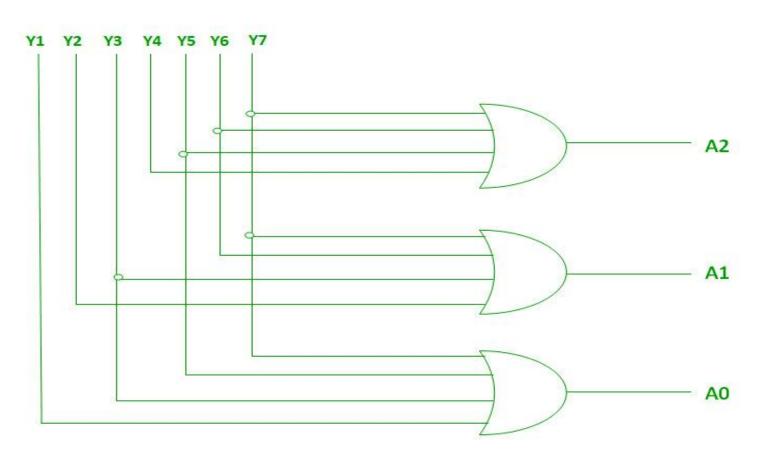
8:3 Encoder (Octal to Binary)

The 8 to 3 Encoder or octal to Binary encoder consists of **8 inputs**: Y7 to Y0 and **3 outputs**: A2, A1 & A0. Each input line corresponds to each octal digit and three outputs generate corresponding binary code.

8:3 Encoder truth table

The truth table for 8 to 3 encoder is as follows

INPUTS								OUTPUTS			
Y7	Y6	Y5	Y4	Y3	Y2	Y1	YO	A2	A1	AO	
0	0	0	0	0	0	0	1	0	0	0	
0	0	0	0	0	0	1	0	0	0	1	
0	0	0	0	0	1	0	0	0	1	0	
0	0	0	0	1	0	0	0	0	1	1	
0	0	0	1	0	0	0	0	1	0	0	
0	0	1	0	0	0	0	0	1	0	1	
0	1	0	0	0	0	0	0	1	1	0	
1	0	0	0	0	0	0	0	1	1	1	


$$A2 = Y7 + Y6 + Y5 + Y4$$

 $A1 = Y7 + Y6 + Y3 + Y2$
 $A0 = Y7 + Y5 + Y3 + Y1$

8:3 Encoder implementation

The above Boolean functions A2, A1 and

A0 can be implemented using four input

OR gates:

