Logical Design Lecture 4

Hexadecimal to Binary Conversion

Example: Convert A2B₁₆ to an equivalent binary number.

First, convert the given hexadecimal to the equivalent decimal number.

$$A2B_{16} = (A \times 16^2) + (2 \times 16^1) + (B \times 16^0)$$

= $(A \times 256) + (2 \times 16) + (B \times 1)$
= $(10 \times 256) + 32 + 11$
= $2560 + 43$
= 2603 (Decimal number)

```
2 | 2603

2 | 1301 -- 1

2 | 650 -- 1

2 | 325 -- 0

2 | 162 -- 1

2 | 81 -- 0

2 | 40 -- 1

2 | 20 -- 0

2 | 10 -- 0

2 | 2 -- 1

2 | 1 -- 0

2 | 0 -- 1
```

The binary number obtained is 101000101011_2 Hence, $A2B_{16} = 101000101011_2$

Addition

```
The 4 basic rules for adding binary digits (bits) are as follows:
0+0=0
0+1=1
1+0=1
1+1=0 with carry 1
Example 1: 10001 + 11101
   10001
(+) 1 1 1 0 1
  101110
```

Subtraction

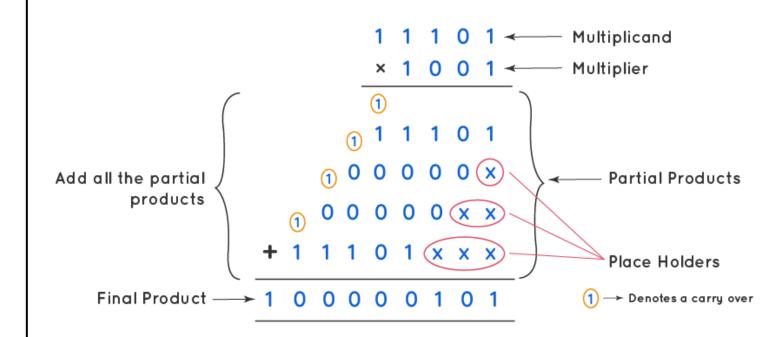
The four basic rules for subtracting bits as follows: 0-0=0

$$1-0 = 1$$

$$1-1 = 0$$

0-1=10-1=1 with **borrow** of 1

Example: $11101 - 10110 = 00111_2$


Example 1: 0011010 – 001100 **Solution:**

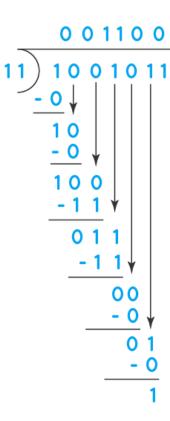
Decimal Equivalent:

$$0 \ 0 \ 1 \ 1 \ 0 \ 1 \ 0 = 26$$

 $0 \ 0 \ 1 \ 1 \ 0 \ 0 = 12$
 $26 - 12 = 14$

Multiplication

The four basic rules for multiplying bits are as follows: 0*0=0 0*1=0 1*0=0 1*0=0 1*1=1


Binary division

The rules for division by binary bits is as follows:

0÷1=0

 $1 \div 1 = 1$ where division by **zero is not permitted**

Example: $110 \div 10 = 10_2$

