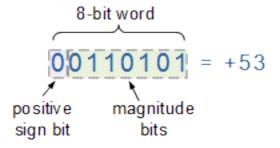
Logical Design Lecture 6

In this lesson

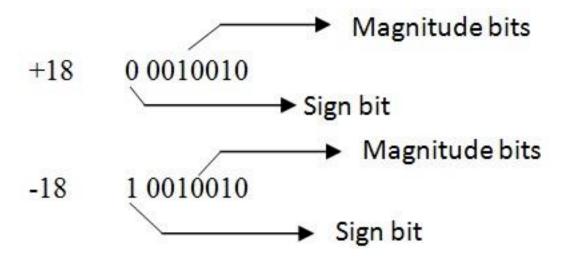
- Negative Numbers Representation in Computers
- Sign-magnitude notation
- One's Complement of a Signed Binary Number
- Two's Complement of a Signed Binary Number
- Digital Codes
 - BCD code
 - Gray Code


Negative Numbers Representation in Computers

There are three common ways to represent negative numbers within the computer.

- Signed magnitude representation.
- 1's compliment representation.
- 2's complement representation.

Sign-magnitude notation


The representation of a signed binary number is commonly referred to as the sign-magnitude notation and **if the sign bit is "0", the number is positive. If the sign bit is "1", then the number is negative**. When dealing with binary arithmetic operations, it is more convenient to use the complement of the negative number.

Sign-magnitude notation

This is the simplest way of representing the both positive and negative numbers in binary system. In the signed magnitude representation,

- Positive number is represented with '0' at its most significant bit (MSB).
- Negative number is represented with '1' at its most significant bit (MSB).

One's Complement of a Signed Binary Number

A positive number always starts with 0, at its MSB while a negative number always starts with 1, at its MSB.

1's compliment of a number is created by replacing all 0's with 1's & all 1's with 0's.

For example, if a binary number is 01101001, then its one's complement is 10010110.

Ex: -33 =?

33 is represented as $(100001)_2$, In <u>8-bit notation</u>, it is represented as $(0010\ 0001)_2$

Now, -33 is represented in one's compliment as $(1101 \ 1110)_2$

Ex: -127 =?

In 8 bit notation, 127 is represented as $(0111 1111)_2$

Now, -127 is represented in one's compliment as (1000 0000)₂

Two's Complement of a Signed Binary Number

To find the 2's compliment of a binary number,

- First, find the 1's compliment of that number.
- Then "1" is added to the 1's compliment.

Ex 1: -33 =?

33 is represented as (100001)₂. In 8-bit notation, it is represented as (0010 0001)₂

Now, -33 is represented in one's compliment as $(1101 \ 1110)_2$

Adding 1 (0000 0001) to it, The result is $(1101 \ 1111)_2$.

Therefore, the two's complement of the number -33 is $(1101\ 1111)_2$.

Two's Complement of a Signed Binary Number

Ex 2: -127 =?

In 8 bit notation, 127 is represented as (0111 1111)₂

Now, -127 is represented in one's compliment as (1000 0000)₂

Adding 1 (0000 0001) to it, The result is (1000 0001)₂

Therefore, the two's complement of the number -127 is (1000 0001)₂

Ex 3: -1 =?

1 is represented as (001)₂ In 8 bit notation, it is represented as (0000 0001)₂

Now, -1 is represented in one's compliment as (1111 1110)2

Adding 1 (0000 0001) to it, The result is $(1111 \ 1111)_2$

Therefore, the two's complement of the number -1 is (1111 1111)₂