Logical Design Lecture 8

Binary Coded Decimal (BCD).

A code used to represent each decimal digit of a number by a 4-Bit Binary Value, the following table represents a conversion of decimal number to BCD.

Decimal	Binary	
0	0000	
1	0001	
2	0010	
3	0011	
4	0100	
5	0101	
6	0110	
7	0111	
8	1000	
9	1001	

BCD code

However, *binary coded decimal* is not the same as **hexadecimal**. Whereas a 4-bit hexadecimal number is valid up to F_{16} representing binary 1111_2 , (decimal 15), binary coded decimal numbers stop at 9 binary 1001_2 .

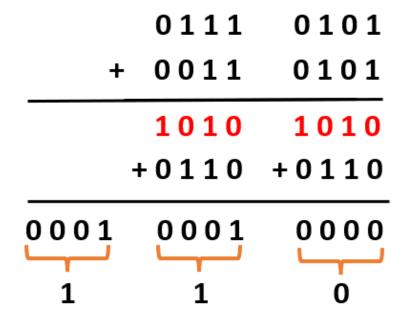
Example: 357₁₀ = 0011 0101 0111 (BCD).

Addition of BCD code

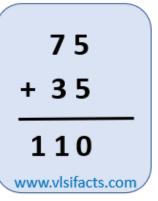
Step 1: Add the two BCD numbers, using the <u>rules for binary addition</u>.

Step 2: If a 4-bit sum is equal to or less than 9, it is a valid BCD number.

Step 3: If a 4-bit sum is greater than 9, or if a carry out of the 4-bit group is generated, it is an invalid result. Add 6 (0110) to the 4-bit sum in order to skip the six invalid BCD code words and return the code to 8421. If a carry results when 6 is added, simply add the carry to the next 4-bit group.


Addition of BCD code examples

Example 1: Find the sum of the BCD numbers 01000011 + 00110101


 $\begin{array}{c} 0100 & 0011 \\ + & 0011 & 0101 \\ \hline \hline 0111 & 1000 \end{array}$

Addition of BCD code examples

Example 2: Find the sum of the BCD numbers 01110101 + 00110101

Both left and right BCD numbers are invalid. So we would add 6 to both the BCD numbers.

Addition of BCD code examples

Example:

Convert each of the following decimal numbers to BCD

A- 45

B- 2693

 $45 = 0100 \ 0101$

2693 = 0010 0110 1001 0011

Gray Code

The **gray code** is unweighted and is not an arithmetic code; that is, there are no specific weights assigned to the bit positions. The important feature of the Gray code is that it exhibits only a single bit change from one code number to the next. Table (2) is a listing of the four bit gray code for decimal numbers 0 through 15.

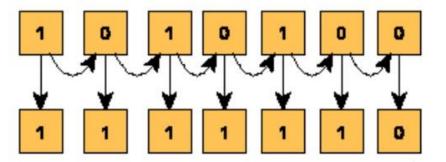
Table bellow shows the Decimal, Binary, Gray Code Numbers

	Decimal (base 10)	Binary (base 2)	Binary-Reflected (no base)
	0	0000	0000
	1	0001	0001
g3 = b3	2	0010	0011
$g2 = b3 \oplus b2$	3	0011	0010
$g1 = b2 \oplus b1$	4	0100	0110
$g0 = b1 \oplus b0$	5	0101	0111
	6	0110	0101
	7	0111	0100
	8	1000	1100
	9	1001	1101
	10	1010	1111

Gray code pros and cons

Advantages:

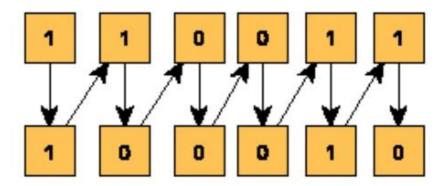
- 1. Can be used to minimise a logic circuit.
- 2. It minimise error while converting analog to digital signals.
- 3. It is widely used in digital communications, such as digital terrestrial television and cable TV systems, to correct errors.


Disadvatages:

- 1. It is not suitable for arithmatics opertions.
- 2. It is limited to few practical applications.

Binary-to-Gray Conversion

- 1. The most significant bit (left-most) in the gray code is the same as the corresponding MSB in binary number.
- 2. Going from left to right, add each adjacent pair of binary code bits to get the next gray code bit. Discard carry.


Examples:

Gray to Binary conversion.

- 1– The MSB is the binary code is same as corresponding digit in the Gray code.
- 2- Add each binary digit generated to the Gray digit in the next adjacent position and discard carry.

Example:

