$$=A\bullet A+AB$$

$$= A + AB$$

$$= A(1+B)$$

$$=A\bullet 1$$

$$= A$$

• Rule 12 Redundancy:

$$A + \overline{A}B = (A + B)$$

A	В	AB	A + AB	A + B	A
0	0	0	0	0	B
0	1	1	1	1	
1	0	0	1	1	A
1	1	0	1	1	

The proof:

Left side =
$$A + \overline{A}B$$

$$= A + AB + \overline{A}B$$

$$= A + B(A + \overline{A})$$

$$=A+B \bullet 1$$

$$=A+B$$

= Right side

• Rule 13:

$$(A+B)(A+C) = A + BC$$

A	В	C	A + B	A+C	(A+B)(A+C)	BC	A + BC	$A + \Box$
0	0	0	0	0	0	0	0	B
0	0	1	0	1	0	0	0	
0	1	0	1	0	0	0	0	c
0	- 1	1	1.	1	1	1	1	
1	0	0	1	1	1	0	1	
1	0	1	1	1	1_	0	1	A
1	1	0	1	1	1	0	1	$B \longrightarrow B$
1	1	1 1	1	1	1	1	1	c
					4			
						equal		

The proof:

Left side =
$$(A + B)(A + C)$$

$$= AA + AC + AB + BC$$

$$= A + AC + AB + BC$$

$$= A(1 + C + B) + BC$$

$$= A \bullet 1 + BC$$

$$= A + BC$$

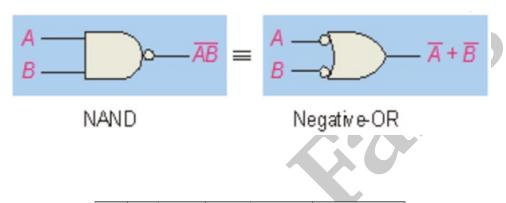
= Right side

■ DeMorgan's Theorem (First Theorem)

• The complement of a product of variables is equal to the sum of complemented variables.

$$\overline{AB} = \overline{A} + \overline{B}$$

• Applying DeMorgan's First Theorem to gates:



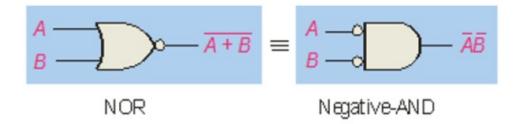
A	В	${\sim}{ m A}$	${\sim}{ m B}$	${\sim}{ m AB}$	\sim A+ \sim B
0	0	1	1	1	1
0	1	1	0	1	1
1	0	0	1	1	1
1	1	0	0	0	0

■ DeMorgan's Theorem (Second Theorem)

• The complement of a sum of variables is equal to the product of complemented variables.

$$\overline{A+B} = \overline{A} \bullet \overline{B}$$

• Applying DeMorgan's Second Theorem to gates:



\mathbf{A}	В	\sim A	\sim B	\sim (A+B)	${\sim}$ A. ${\sim}$ B
0	0	1	1	1	1
0	1	1	0	0	0
1	0	0	1	0	0
1	1	0	0	0	0

Example:

Apply DeMorgan's theorem to simplify the following expression.

$$X = \overline{\overline{C} + D}$$

To apply DeMorgan's theorem to the above expression, we can break the over-bar that covering both terms and change the sign between them as follows:

$$X = \overline{\overline{C}} \bullet \overline{D}$$

$$X = C \bullet \overline{D}$$

Example:

Simplify the following expression:

$$Y = (A + B)(A + \overline{B})$$

$$= AA + A\overline{B} + AB + B\overline{B}$$

$$= A + A(\overline{B} + B)$$

$$= A + A$$

$$= A$$

Or

$$Y = AA + A\overline{B} + AB + B\overline{B}$$

$$= AA + A\overline{B} + AB$$

$$= A + A\overline{B} + AB$$

$$= A(1 + \overline{B} + B)$$

$$= A \bullet 1$$

$$= A$$

Example:

$$Y = ABC + A\overline{B}C + AB\overline{C}$$

$$= AB(C + \overline{C}) + A\overline{B}C$$

$$= AB + A\overline{B}C$$

$$= A(B + \overline{B}C)$$

$$= A(B + C)$$

Example:

$$Y = ABC + A\overline{B} \ \overline{(\overline{A} \ \overline{C})}$$

$$= ABC + A\overline{B} \ (\overline{\overline{A}} + \overline{\overline{C}})$$

$$= ABC + A\overline{B} \ (A + C)$$

$$= ABC + A\overline{B} + A\overline{B}C$$

$$= AC(B + \overline{B}) + A\overline{B}$$

$$= AC + A\overline{B}$$

$$= A(C + \overline{B})$$

 \bullet Determine if the following equation is valid (Derived from the truth table)

$$\overline{X1} \ \overline{X3} + X2 \ X3 + X1 \ \overline{X2} = \overline{X1} \ X2 + X1 \ X3 + \overline{X2} \ \overline{X3}$$

Left-Hand Side (LHS)							
Row number	x_1	x_2	x_3	$\overline{x_1}\overline{x_3}$	$x_2 x_3$	$x_1 \overline{x_2}$	f
0	0	0	0	1	0	0	1
1	0	0	1	0	0	0	0
2	0	1	0	1	0	0	1
3	0	1	1	0	1	0	1
4	1	0	0	0	0	1	1
5	1	0	1	0	0	1	1
6	1	1	0	0	0	0	0
7	1	1	1	0	1	0	1

Right-Hand Side (RHS)							
Row number	x_1	x_2	x_3	$\overline{x_1}x_2$	x_1x_3	$\overline{x_2} \overline{x_3}$	f
0	0	0	0	0	0	1	1
1	0	0	1	0	0	0	0
2	0	1	0	1	0	ŏ	1
3	0	1	1	1	0	0	1
4	1	0	0	0	0	1	1
5	1	0	1	0	1	0	1
6	1	1	0	0	0	ů 0	0
7	1	1	1	0	1	0	1

$$\overline{x}_{1}\overline{x}_{3} + x_{2}x_{3} + x_{1}\overline{x}_{2} \stackrel{?}{=} \overline{x}_{1}x_{2} + x_{1}x_{3} + \overline{x}_{2}\overline{x}_{3}$$
LHS
$$\frac{f}{1}$$

$$0$$

$$1$$

$$1$$

$$1$$

$$1$$

$$1$$

$$0$$

$$1$$

$$1$$

$$0$$

$$1$$

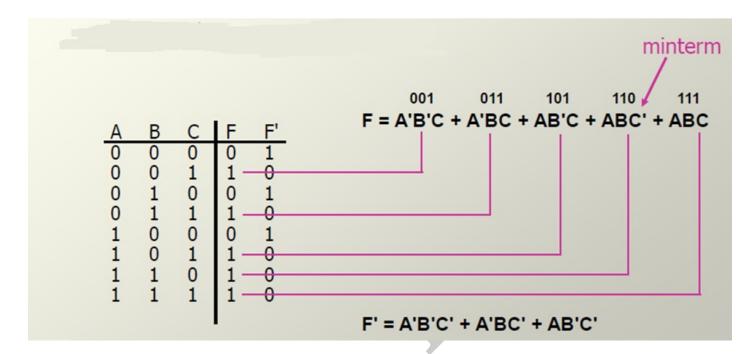
$$1$$

$$1$$

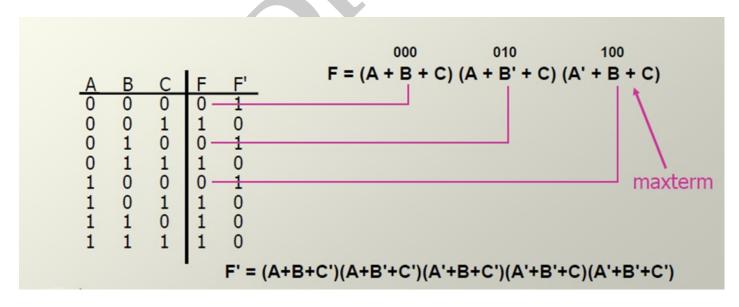
$$0$$

$$1$$

- Sum of Product (SOP) and Product of Sum (POS) forms
- Sum of Product (SOP)



• Product of Sum (POS)



Example:

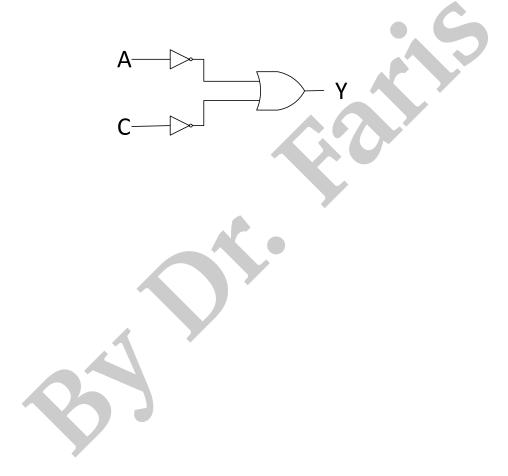
Simplify the following expression, then draw the logic circuit after simplification.

$$Y = \overline{A + B} + \overline{ABC} + \overline{AB}$$

$$= \overline{A} \overline{B} + \overline{A} + \overline{B} + \overline{C} + \overline{A} + B$$

$$= \overline{A}(\overline{B} + 1 + 1) + (B + \overline{B}) + \overline{C}$$

$$= \overline{A} + \overline{C}$$



Example:

For the given truth table simplify and draw the circuit before and after simplification.

A	В	\mathbf{C}	\mathbf{Y}
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

$$Y = \overline{A}B\overline{C} + \overline{A}BC + AB\overline{C} + ABC$$

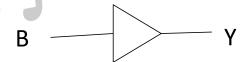
$$= \overline{A}B(\overline{C} + C) + AB(\overline{C} + C)$$

$$= \overline{A}B + AB$$

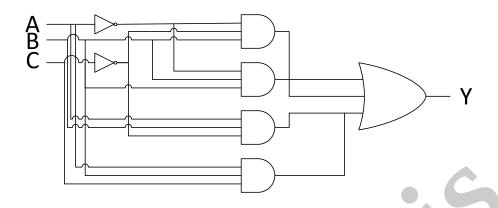
$$= B(\overline{A} + A)$$

$$= B$$

• The circuit after simplification:



• The circuit before simplification:



Exercise:

Design a logic circuit with three inputs variables (A, B, C) that will produce a HIGH ("1") output if the input is Odd number?

Exercise:

Write the equation (s) of the following logic circuit:

