Logical Design Lectures

Dr. Faris Llwaah and Eman Abdulaziz

January 25, 2020

Lecture 8 – D & J-K & T Flip Flop & Counters Circuits

• D - Flip Flop

The D-type flip-flop is a modification of the $\mathbf{Set}/\mathbf{Reset}$ flip-flop by adding an inverter to prevent the S and R inputs from being at the same logic level. In fact the D- Flip Flop is to a large extent of the clocked flip-flops as it ensures that inputs S and R are never equal to one logic (0 or 1) at the same time. The D-type flip flop is constructed from a gated SR flip-flop with an inverter added between the S and the R inputs to allow for a single D (Data) input as shown in the figure 1.

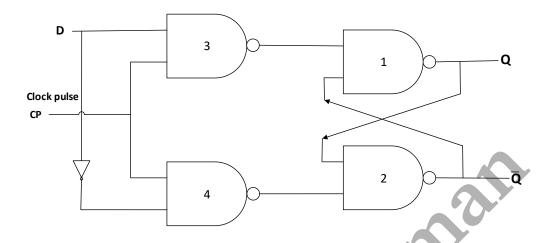


Figure 1: D - FF using NAND gates

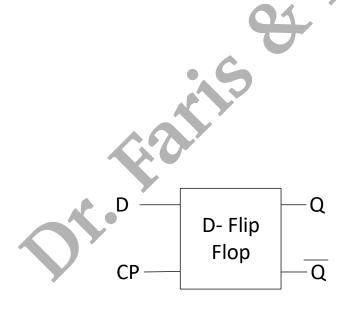


Figure 2: Block Diagram of D FF

CP	D	Q	State
0	0	0	No change
0	1	1	No change
1	0	0	Reset
1	1	1	Set

- When CP = 0, the output of NAND gates in First-line are logic 1, and the circuit can not change state, regardless of the value of D.
- When CP = 1 the state takes value as follows:
- 1- if $D = 1 \rightarrow$ output of gate 3 is 0 and gate 4 is 1, so the output of gate 1 is at logic 1 and Q = 1
- 2- if $D=0 \to \text{output}$ of gate 3 is 1 and output of gate 4 is 0, with this output of gate 1 is at logic 0 and output of gate 2 is at logic 1 then Q=0

• J-K - Flip Flop

The JK flip flop is an improvement on the SR flip flop where S=R=1 is not a problem.

- ullet The JK is an improvement of the RS Flip flop.
- The problem of indeterminate state in RS flip flop solved in JK flip flop.
- ullet The JK inputs behave like RS flip flop to Set or Reset.
- When both inputs of JK are equal to 1, the FF switches to complement state, that is, if Q=0, it switches to Q=1 and vice-versa.
- This condition can be written as $Q_{n+1} = \overline{Q_n}$, where $Q_{n+1} = next$ state, $Q_n = present$ state.

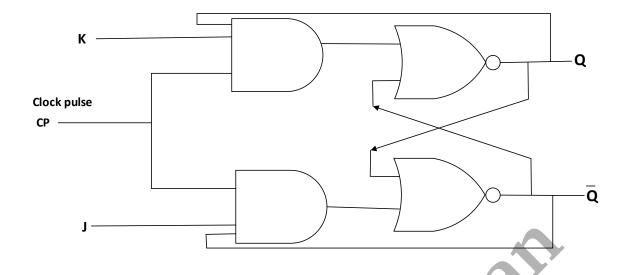


Figure 3: Clocked JK Flip Flop

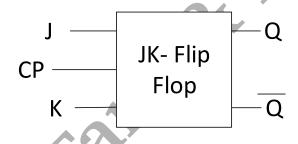


Figure 4: Block Diagram of JK Flip Flop

	Qn	J	K	Qn+1	State
	0	0	0	0	No change
	0	0	1	0	Reset
	0	1	0	1	Set
	0	1	1	1	Complement Qn+1
	1	0	0	1	No change
	1	0	1	0	Reset
ĺ	1	1	0	1	Set
	1	1	1	0	Complemen Qn+1

- When J = K = 0, the flip flop remains in No change state, however $Q_{n+1} = Q_n$.
- When K = 1, J = 0, the flip flop in Reset state i.e. Q = 0.
- When K = 0, J = 1, the flip flop in Set state i.e. Q = 1.
- when J = K = 1, the flip flop will be in Toggling state, i.e. $Q_{n+1} = \overline{Q_n}$. However for repeated CP, the output will turn ON, OFF, ON, OF and so on.

• T - Flip Flop

T flip flop is obtained from the JK flip flop where J and K inputs are connected together and given to the T input. As shown in the following circuit.

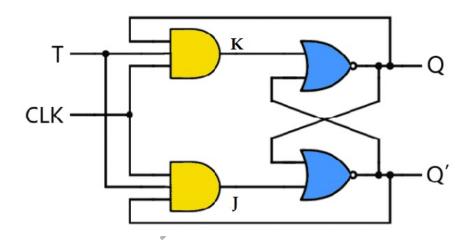


Figure 5: Logic circuit of T Flip Flop

Input	Outputs			
IIIput	Present State	Next State		
Т	Qn	Q _{n+1}		
0	0	0		
0	1	1		
1	0	1		
1	1	0		

Figure 6: Truth table of T Flip Flop

• The applications of Flip Flop

- 1— Parallel data storage. A common requirement in digital system is to take several bits of data on parallel lines and store them simultaneously in a group of flip flops.
 - Each of the four parallel data lines are connected to the D input/output of a flip flop.
 - The clock input/output of all flip flops are connected to a common clock i/ps, so that each FF is triggered at the same time.
 - In this example a +ve edge triggered FF is used.
 - Also the asynchronous i/ps are connected to a common \overline{CLR} line which Reset all FFs.
 - A group of FFs used for data storage are called registers.

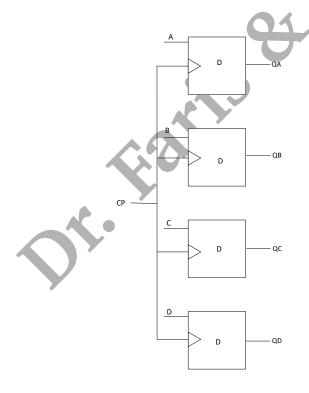


Figure 7: Parallel in Parallel out register