Even and Odd functions

The cos and sec functions are even functions; the rest other functions are odd functions.

$$sin(-x) = -sin x$$

$$\cos(-x) = \cos x$$

$$tan(-x) = -tan x$$

$$\cot(-x) = -\cot x$$

$$csc(-x) = -csc x$$

$$sec(-x) = sec x$$

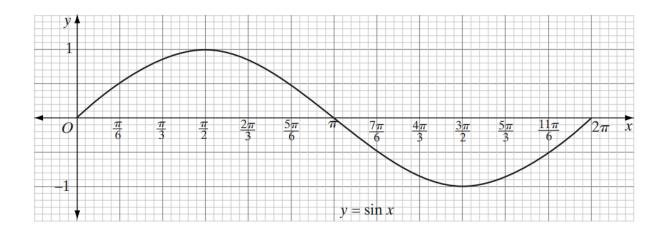
Gragh of The Sine Function

The sine function is a set of ordered pairs of real numbers. Each ordered pair can be represented as a point of the coordinate plane. The domain of the sine function is the set of real numbers, that is, every real number is a first element of one pair of the function.

To sketch the graph of the sine function, we will plot a portion of the graph using the subset of the real numbers in the interval $0 \le x \le 2\pi$.

$$\sin\frac{\pi}{6} = \frac{1}{2} = 0.5$$

x	0	$\frac{\pi}{6}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	<u>5π</u> 6	π	<u>7π</u> 6	$\frac{4\pi}{3}$	$\frac{3\pi}{2}$	<u>5π</u> 3	<u>11π</u> 6	2π
sin x	0	0.5	0.87	- 1	0.87	0.5	0	-0.5	-0.87	-1	-0.87	-0.5	0



The function $y = \sin x$ is called a **periodic function** with a **period** of 2π because for every x in the domain of the sine function, $\sin x = \sin (x + 2\pi)$.

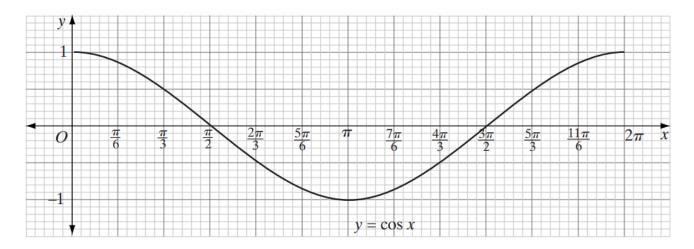
Gragh of The Cosine Function

The cosine function, like the sine function, is a set of ordered pairs of real numbers. Each ordered pair can be represented as a point of the coordinate plane. The domain of the cosine function is the set of real numbers, that is, every real number is a first element of one pair of the function.

To sketch the graph of the cosine function, we plot a portion of the graph using a subset of the real numbers in the interval $0 \le x \le 2\pi$. We know that

$$\cos\frac{\pi}{6} = \frac{\sqrt{3}}{2} = 0.866025\dots$$

x	0	$\frac{\pi}{6}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	<u>5π</u> 6	π	$\frac{7\pi}{6}$	$\frac{4\pi}{3}$	$\frac{3\pi}{2}$	$\frac{5\pi}{3}$	$\frac{11\pi}{6}$	2π
cos x	- 1	0.87	0.5	0	-0.5	-0.87	-1	-0.87	-0.5	0	0.5	0.87	-1



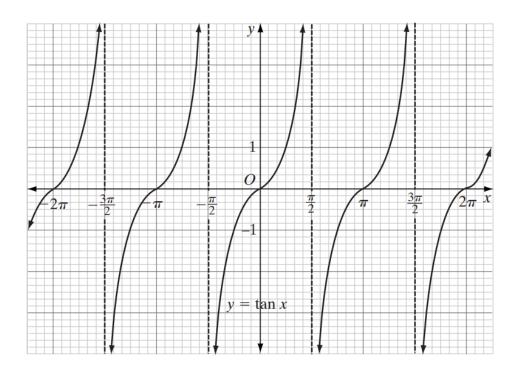
The function $y = \cos x$ is a periodic function with a period of 2π because for every x in the domain of the cosine function, $\cos x = \cos (x + 2\pi)$.

Gragh of The Tangent Function

We can use the table shown below to draw the graph of $y = \tan x$. The values of x are given at intervals of $\frac{\pi}{6}$ from -2π to 2π . The values of $\tan x$ are the approximate decimal values displayed by a calculator, rounded to two decimal places. No value is listed for those values of x for which $\tan x$ is undefined.

x	-2π	$-\frac{11\pi}{6}$	$-\frac{5\pi}{3}$	$-\frac{3\pi}{2}$	$-\frac{4\pi}{3}$	$-\frac{7\pi}{6}$	$-\pi$	$-\frac{5\pi}{6}$	$-\frac{2\pi}{3}$	$-\frac{\pi}{2}$	$-\frac{\pi}{3}$	$-\frac{\pi}{6}$
tan x	0	0.58	1.73	_	-1.73	-0.58	0	0.58	1.73	_	-I.73	-0.58

x	0	$\frac{\pi}{6}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	<u>5π</u> 6	π	<u>7π</u> 6	$\frac{4\pi}{3}$	$\frac{3\pi}{2}$	<u>5π</u> 3	<u>Ππ</u>	2π
tan x	0	0.58	1.73	_	-1.73	-0.58	0	0.58	1.73	_	-1.73	-0.58	0



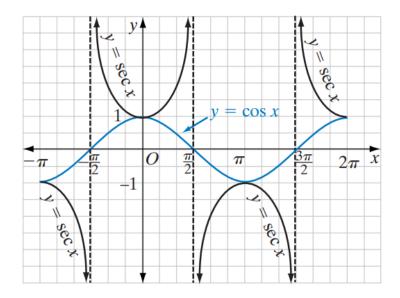
The graph of the tangent function is a curve that increases through negative values of $\tan x$ to 0 and then continues to increase through positive values.

Gragh of The Secante Function

The secant function is defined in terms of the cosine function: $\sec x = \frac{1}{\cos x}$. To graph the secant function, we can use the reciprocals of the cosine function values. Reciprocal values of the cosine function exist for $-1 \le \cos x < 0$, and for $0 < \cos x \le 1$. Therefore:

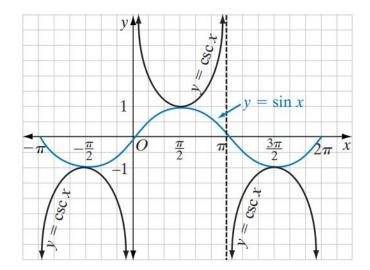
$$-\infty < \sec x \le -1$$
 $1 \le \sec x < \infty$

For integral values of n, the vertical lines on the graph at $x = \frac{\pi}{2} + n\pi$ are symptotes.



Gragh of The Cosecant Function

For values of x that are multiples of π , $\sin x = 0$ and $\csc x$ is undefined. For integral values of n, the vertical lines on the graph at $x = n\pi$ are asymptotes.

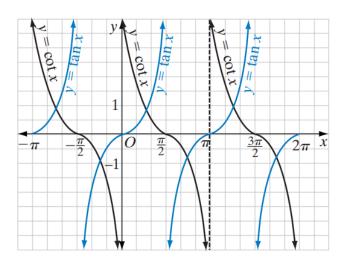


The cosecant function is defined in terms of the sine function: $\csc x = \frac{1}{\sin x}$. To graph the cosecant function, we can use the reciprocals of the sine function values.

.

Gragh of The Cotan gent Function

The cotangent function is defined in terms of the tangent function: $\cot x = \frac{1}{\tan x}$. To graph the cotangent function, we can to use the reciprocals of the tangent function values. For values of x that are multiples of π , $\tan x = 0$ and $\cot x$ is undefined. For values of x for which $\tan x$ is undefined, $\cot x = 0$. For integral values of x, the vertical lines on the graph at $x = n\pi$ are asymptotes.



INVERSE TRIGOMETRIC FUNCTIONS

DEF.: The inverse sine fun. Denoted by $\sin^{-1} x$ is defined to be the inverse of restricted sine fun. $\sin x - \frac{\pi}{2} \le x \le \frac{\pi}{2}$

DEF.: The inverse cosine fun. Denoted by $\cos^{-1} x$ is defined to be the inverse of restricted cosine fun. $\cos x$ $0 \le x \le \pi$

DEF.: The inverse tangent fun. Denoted by $\tan^{-1} x$ is defined to be the inverse of restricted tangent fun. $\tan x - \frac{\pi}{2} \le x \le \frac{\pi}{2}$

DEF.: The inverse secant fun. Denoted by $\sec^{-1} x$ is defined to be the inverse of restricted secant fun. $\sec x$ $0 \le x \le \pi$, $x \ne \frac{\pi}{2}$

<u>NOTE</u>: $\sin^{-1} x \neq \frac{1}{\sin x}$

EXAM:

- (1) if $x = \sin^{-1} \frac{1}{2}$, find value of x
- $x = \sin^{-1}\frac{1}{2} \Rightarrow \sin x = \sin \sin \frac{1}{2} \Rightarrow \sin x = \frac{1}{2} \Rightarrow x = \frac{\pi}{6}$
- (2) simplify $\sin(\sin^{-1}\frac{1}{2})$
- $\because \sin^{-1}\frac{1}{2} = \frac{\pi}{6} \Rightarrow \sin(\sin^{-1}\frac{1}{2}) = \sin(\frac{\pi}{6}) = \frac{1}{2}$
- (3) show that $\cos(\sin^{-1}\frac{1}{2}) = \frac{\sqrt{3}}{2}$
- $\because \cos x = \sqrt{1 \sin^2 x}$
- $\therefore \cos(\sin^{-1} x) = \sqrt{1 \sin^2 \sin^{-1} \frac{1}{2}} = \sqrt{1 \sin^2 \frac{\pi}{6}} = \sqrt{1 (\frac{1}{2})^2} = \frac{\sqrt{3}}{2}$

مشتقات الدوال المثلثية العكسية:

$$\boxed{1} \frac{d}{dx} \sin^{-1} u = \frac{1}{\sqrt{1 - u^2}} \frac{du}{dx}$$

$$2 \frac{d}{dx}\cos^{-1}u = \frac{-1}{\sqrt{1-u^2}}\frac{du}{dx}$$

$$\boxed{3} \frac{d}{dx} \tan^{-1} u = \frac{1}{1+u^2} \frac{du}{dx}$$

$$\boxed{4} \frac{d}{dx} \cot^{-1} u = \frac{-1}{1+u^2} \frac{du}{dx}$$

$$\boxed{5} \frac{d}{dx} \sec^{-1} u = \frac{1}{|u|\sqrt{u^2 - 1}} \frac{du}{dx}$$

$$\boxed{6} \frac{d}{dx}\csc^{-1}u = \frac{-1}{|u|\sqrt{u^2 - 1}}\frac{du}{dx}$$

EXAM: Find
$$\frac{dy}{dx}$$
 to:

$$y = \sin^{-1} 2x \Rightarrow \frac{dy}{dx} = \frac{2}{\sqrt{1 - 4x^{2}}}$$

$$y = \tan^{-1} 3x + e^{\tan^{-1} x} \Rightarrow \frac{dy}{dx} = \frac{3}{1 + 9x^{2}} + e^{\tan^{-1} x} \cdot \frac{1}{1 + x^{2}}$$

$$y = \cos^{-1} \cos x \Rightarrow \frac{dy}{dx} = \frac{-(-\sin x)}{\sqrt{1 - \cos^{2} x}} = \frac{\sin x}{\sin x} = 1$$

$$OR \quad \cos^{-1} \cos x = x \Rightarrow \frac{dy}{dx} = 1$$

$$y = e^{x} \sec^{-1} x \Rightarrow \frac{dy}{dx} = e^{x} \cdot \frac{1}{x\sqrt{x^{2} - 1}} + \sec^{-1} x \cdot e^{x}$$

Homework

1) Find
$$\frac{dy}{dx}$$
 to $y = Ln(\cos^{-1}x)$, $y = \sqrt{\cot^{-1}x}$, $y = (\tan x)^{-1}$, $y = \cot^{-1}\sqrt{x}$

2) Find $\frac{dy}{dx}$ to $x^3 + x \tan^{-1} y = e^y \sin^{-1}(xy) = \cos^{-1}(x - y)$

Hyperbolic Functions