CLASSICAL ENCRYPTION TECHNIQUES

Symmetric encryption: is a form of cryptosystem in which encryption and decryption are performed using the same key. It is also known as conventional encryption or single-key encryption.

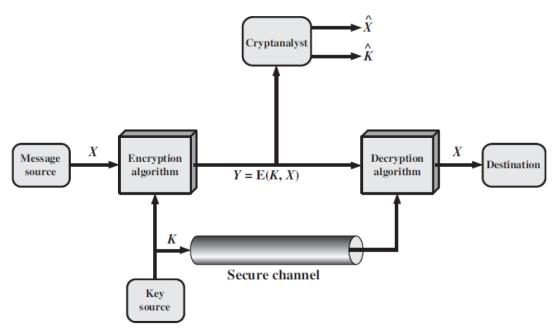


Figure 2.2 Model of Symmetric Cryptosystem

There are two requirements for secure use of conventional encryption (symmetric encryption):

- A strong encryption algorithm
- A secret key known only to sender / receiver

Mathematically:

$$C = EK(X)$$
 or $C = E(K, X)$

$$X = DK(C)$$
 or $X = D(K, C)$

X = plaintext, C = ciphertext, K = secret key, E = encryption algorithm, D = decryption

algorithm

Cryptanalysis

• Objective: to recover the plaintext of a ciphertext or, more typically, to recover the secret key.

- Kerkhoff's principle: the adversary knows all details about a cryptosystem except the secret key.
- Two general approaches:
 - brute-force attack
 - non-brute-force attack (cryptanalytic attack)

Brute-Force Attack

- Try every key to decipher the ciphertext.
- On average, need to try half of all possible keys
- Time needed proportional to size of key space

Key Size (bits)	Number of Alternative Keys	Time required at 1 decryption/μs	Time required at 10 ⁶ decryptions/μs
32	$2^{32} = 4.3 \times 10^9$	$2^{31} \mu s = 35.8 \text{minutes}$	2.15 milliseconds
56	$2^{56} = 7.2 \times 10^{16}$	$2^{55} \mu s = 1142 years$	10.01 hours
128	$2^{128} = 3.4 \times 10^{38}$	$2^{127} \mu s = 5.4 \times 10^{24} \text{years}$	5.4×10^{18} years
168	$2^{168} = 3.7 \times 10^{50}$	$2^{167} \mu s = 5.9 \times 10^{36} \text{years}$	5.9×10^{30} years
26 characters (permutation)	$26! = 4 \times 10^{26}$	$2 \times 10^{26} \mu\text{s} = 6.4 \times 10^{12} \text{years}$	6.4×10^6 years

${\bf Non\text{-}brute\text{-}force\ attack\ (Cryptanalytic\ Attacks)}$

•summarizes the various types of cryptanalytic attacks based on the amount of information

known to the cryptanalyst.

- 1. ciphertext only : only know algorithm / ciphertext, statistical, can identify plaintext
- 2. known plaintext : know/suspect plaintext & ciphertext to attack cipher
- 3. chosen plaintext: select plaintext and obtain ciphertext to attack cipher

- 4. chosen ciphertext : select ciphertext and obtain plaintext to attack cipher
- 5. chosen text : select either plaintext or ciphertext to en/decrypt to attack cipher

Classical Ciphers

- Plaintext is viewed as a sequence of elements (e.g., bits or characters)
- There are three basic building blocks of all encryption techniques:
- 1. Substitution cipher: replacing each element of the plaintext with another element.

(Caesar Cipher, Monoalphabetic Ciphers, Playfair Cipher, Polyalphabetic Ciphers, Vegenere table, One-Time Pad)

- 2. Transposition (or permutation) cipher: rearranging the order of the elements of the plaintext. (Rail fence cipher, Row Transposition Ciphers)
- 3. Product cipher: using multiple stages of substitutions and transpositions.