(5) Fixed-point iteration method:

We consider method for determining the solution to an equation f(x)=0 that is expressed for some function g in the form g(x)=x.

A solution to such an equation is said to be a fixed point of the function g. If a fixed point could be found for any given g, then every root-finding problem could also be solved. If we take x_0 as the initial point then the iterative form is

$$x_{i+1}=g(x_i)$$

that is: $x_1 = g(x_0)$, $x_2 = g(x_1)$, $x_3 = g(x_2)$ and so on.

Example (13): Find the approximate root of the equation $x^2-2x-3=0$ by using fixed-point method with take $x_0=4$.

Solution: We find the exact roots of this equation $f(x) = x^2 - 2x - 3 = 0$

$$(x-3)(x+1)=0 \longrightarrow x=3 \text{ and } x=-1$$

Case(1):
$$f(x) = x^2 - 2x - 3 = 0 \implies x = g_1(x) = \sqrt{3 + 2x}$$

 $\implies x_{i+1} = g_1(x_i) = \sqrt{3 + 2x_i}$

$$i=0$$
 $\longrightarrow x_1 = g_1(x_0) = \sqrt{3 + 2x_0} = \sqrt{3 + 2(4)} = 3.3166$

i=1
$$\longrightarrow x_2 = g_1(x_1) = \sqrt{3 + 2x_1} = \sqrt{3 + 2(3.3166)} = 3.1037$$

$$i=2$$
 $\longrightarrow x_3 = g_1(x_2) = \sqrt{3 + 2x_2} = \sqrt{3 + 2(3.1037)} = 3.0344$

i=3
$$\longrightarrow x_4 = g_1(x_3) = \sqrt{3 + 2x_3} = \sqrt{3 + 2(3.0344)} = 3.01144$$

i=4
$$\longrightarrow x_5 = g_1(x_4) = \sqrt{3 + 2x_4} = \sqrt{3 + 2(3.01144)} = 3.0038$$

So on , we converge to the root (x=3).

Case(2):
$$x^2-2x-3=0 \longrightarrow x^2-2x=3 \longrightarrow (x-2)=3 \longrightarrow x=3/(x-2)$$

 $x = g_2(x) = \frac{3}{x-2}$
 $x = g_2(x) = \frac{3}{x-2}$

i=0
$$\longrightarrow x_1 = g_2(x_0) = \frac{3}{x_0 - 2} = \frac{3}{4 - 2} = 1.5$$

i=1
$$\longrightarrow x_2 = g_2(x_1) = \frac{3}{x_1 - 2} = \frac{3}{1.5 - 2} = -6$$

$$i=2$$
 $\longrightarrow x_3 = g_2(x_2) = \frac{3}{x_2-2} = -0.375$

i=3
$$\longrightarrow x_4 = g_2(x_3) = \frac{3}{x_3 - 2} = -1.2632$$

i=4
$$\longrightarrow x_5 = g_2(x_4) = \frac{3}{x_4 - 2} = -0.9193$$

:

So on , we converge oscillating to the root (x=-1).

Case(3):
$$x^2-2x-3=0 \longrightarrow x^2-3=2x \longrightarrow x=(x^2-3)/2$$

$$\longrightarrow x = g_3(x) = \frac{x^2-3}{2}$$

$$\longrightarrow x_{i+1} = g_3(x_i) = \frac{x_i^2-3}{2}$$

i=0
$$x_1 = g_3(x_0) = \frac{x_0^2 - 3}{2} = \frac{(4)^2 - 3}{2} = 6.5$$

$$i=1$$
 $x_2 = g_3(x_1) = \frac{x_1^2 - 3}{2} = 19.625$

$$i=2$$
 $\longrightarrow x_3 = g_3(x_2) = \frac{x_2^2 - 3}{2} = 191.0703$

i=3
$$x_4 = g_3(x_3) = \frac{x_3^2 - 3}{2} = 18252.42977$$

:

So on, we obtain divergent.

Note: The following theorem gives sufficient conditions for the existence and uniqueness of a fixed-point.

Theorem:

If $g \in C[a,b]$ and $g(x) \in [a,b]$ for all $x \in [a,b]$, then g has a fixed point in [a,b]. Further, suppose g'(x) exists on [a,b] and $|g'(x)| \le k < 1$ for all $x \in (a,b)$. Then g has a unique fixed point r in [a,b].

Example (14): Find the approximate root of the equation $x^3+4x^2-10=0$ in the interval [1,2] by using fixed-point method with take $x_0=1.5$.

Solution: The equation $x^3+4x^2-10=0$ has a unique root in [1,2]. There are many ways to change the equation to the form x=g(x) as follows:

(a)
$$x = g_1(x) = x - x^3 - 4x^2 + 10$$
 (b) $x = g_2(x) = \sqrt{\frac{10}{x} - 4x}$

(c)
$$x = g_3(x) = \frac{1}{2}\sqrt{10 - x^3}$$
 (d) $x = g_4(x) = \sqrt{\frac{10}{4 + x}}$

(e)
$$x = g_5(x) = x - \frac{x^3 + 4x^2 - 10}{3x^2 + 8x}$$

To approximate the fixed point of a function g, with the initial approximation $x_0 = 1.5$ and generate the sequence $\{x_i\}_{i=0}^{\infty}$ by letting $x_{i+1} = g(x_i)$ for each $i \ge 0$.

(a)
$$|g_1'(1.5)| = -8.75 > 1$$
 (diverge) (b) $|g_2'(1.5)| = 5.17 > 1$ (diverge)

(c)
$$|g_3'(1.5)| = |0.6556| < 1 \text{ (converge)}$$

If we use $g_3(x)$ to find a fixed point:

$$x_1 = g_3(x_0) = 1.2870$$

$$x_2 = g_3(x_1) = 1.4025$$

$$x_3 = g_3(x_2) = 1.3455$$

:

$$x_{20} = g_3(x_{19}) = 1.3652$$

Algorithm (Fixed-point method)

Input: x_0 , ε , g(x)

Step(1): Set i=1

Step(2): Compute $x = g(x_0)$

Step(3): If $|x-x_0| < \varepsilon$ then print x is a fixed point and stop.

Step(4): Else if set $x_0=x$ and i=i+1 then go to step(2).

Home work:

Find the solution of the equation $f(x)=x^2-x-2=0$ by using Fixed-point method with $x_0=2.5$, and $\varepsilon=5*10^{-5}$.