Chapter Three Numerical Solution of Linear Systems

There are two methods for solving linear system of equations:

Gauss eliminations

Gauss elimination with partial pivoting

Gauss-Jordan elimination

(i) **Direct method** Cramer Rule

Decomposition method

(ii) Indirect method (iterative methods)

Jacobi method

Gauss-Seidel method

- (i) Direct method:
- (1) Gauss elimination with partial pivoting

Algorithm for Gauss elimination: To solve n×n system

R1:
$$a_{11}x_1+a_{12}x_2+...+a_{1n}x_n=a_{1,n+1}$$

R2:
$$a_{21}x_1 + a_{22}x_2 + ... + a_{2n}x_n = a_{2,n+1}$$

:

Rn: $a_{n1}x_1+a_{n2}x_2+...a_{nn}x_n=a_{n,n+1}$

Augmented matrix $A=(a_{ij})$, where $1 \le i \le n$, $1 \le j \le n+1$.

Step 1: For
$$i=1, 2, ..., n-1$$
 do step 2-4 (Elimination Process)

Step 2: Let p be the smallest integer with
$$1 \le p \le n$$
 and $a_{pi} \ne 0$.

If no integer p can be found

Then output ('no unique solution exists');

Stop

Step 3: If
$$p \neq I$$
 then perform $(R_p) \leftrightarrow (R_i)$.

Step 4: For
$$j=i+1$$
, $i+2$, ..., n do step 5 and 6.

Step 5: Set
$$m_{ji} = \frac{a_{ji}}{a_{ii}}$$
.

Step 6: perform
$$(R_i-m_{ii}R_i)\rightarrow R_i$$
.

Step 7: If
$$a_{nn}=0$$
 then output ('no unique solution exists');

Stop

Step 8: set $x_n = \frac{a_{n,n+1}}{a_{nn}}$ (Start backward substitution)

Step 9: For i=n-1, n-2, ...,1 set
$$x_i = \frac{a_{i,n+1} - \sum_{j=i+1}^{n} a_{ij} x_j}{a_{ii}}$$
.

Step 10: Output $(x_1, x_2, ..., x_n)$; (procedure complete successfully) Stop.

Example 1:

Use Gauss elimination to solve

$$2x_1-x_2+x_3=-1$$

 $3x_1+3x_2+9x_3=0$
 $3x_1+3x_2+5x_3=4$.

Solution:

R1:
$$\begin{bmatrix} 2 & -1 & 1 \\ R2: & 3 & 3 & 9 \\ R3: & 3 & 3 & 5 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \\ 11 \end{bmatrix} a_{11} = 2, m_{ji} = \frac{a_{ji}}{a_{ii}} \Rightarrow m_{21} = \frac{a_{21}}{a_{11}} = \frac{3}{2};$$

$$(R_2-m_{21}R_1) \rightarrow R_2$$
 R1: $\begin{bmatrix} 2 & -1 & 1 & -1 \\ 0 & 9/2 & 15/2 & 3/1 \\ R3: & 0 & 9/2 & 7/2 & 11/2 \end{bmatrix}$,

$$a_{22} = \frac{9}{2}$$
, $m_{ji} = \frac{a_{ji}}{a_{ii}} \implies m_{32} = \frac{a_{32}}{a_{33}} = \frac{9/2}{9/2} = 1$

$$(R_3-m_{32}R_2) \to R_3 \qquad R1: \begin{bmatrix} 2 & -1 & 1 & | & -1 \\ R2: & 0 & 9/2 & 15/2 & | & 3/1 \\ R3: & 0 & 0 & -4 & | & 4 \end{bmatrix}$$

$$x_3 = \frac{a_{33}}{a_{34}} = \frac{-4}{4} = -1$$
, $x_2 = \frac{\frac{3}{2} - \frac{15}{2}x_3}{\frac{9}{2}} = 2$, $x_1 = \frac{-1 + x_2 - x_3}{2} = 1$.

Example 2: Solve

$$4x_1+ x_2+ x_3=6$$

 $2x_1+5x_2+2x_3=3$
 $x_1+2x_2+4x_3=11$

The exact solution to each system is $x_1=1$, $x_2=-1$, $x_3=3$.

Gauss elimination with partial pivoting:

Example 3:

The linear system

R1: $0.003x_1 + 59.14x_2 = 59.17$

R2: $5.291x_1-6.130x_2=46.78$

has the exact solution $x_1=10$ and $x_2=1$.

Solution: (by Gauss elimination); $m_{21} = \frac{a_{21}}{a_{11}} = \frac{5.291}{0.003} = 1763.66$

 $(R_2-m_{21}R_1) \rightarrow R_2$ R1: $0.003x_1+59.14x_2 = 59.17$ R2: $-104300x_2=-104400$

Backward substitution implies $x_2=1.001$ and $x_1=-10$.

We note that the large error in the numerical solution for x_1 resulted from the small error of 0.001 in solving for x_2 . Above example illustrates that difficulties can arise in some case when the pivot element $a_{k,k}^{(k)}$ is small relative to entries $a_{i,j}^{(k)}$, for $k \le i \le n$ and $k \le j \le n$. Partial pivoting in general are accomplished by selecting a new element for the pivot $a_{pq}^{(k)}$ and interchanging the k^{th} and p^{th} rows, followed by the interchange of the k^{th} and q^{th} columns, if necessary. The simplest strategy is to select the element in the same column that is below the diagonal and has the largest absolute value that is determine p such that $\left|a_{pk}^{(k)}\right| = \max_{k \le i \le n} \left|a_{ik}^{(k)}\right|$ and perform $(Rk) \longleftrightarrow (Rp)$.

Example 4:

Reconsider the linear system

R1: $0.003x_1+59.14x_2=59.17$ R2: $5.291x_1-6.130x_2=46.78$

Solution: Use the pivoting procedure:

 $\max \left\{ a_{11}^{(1)} \middle| , \left| a_{21}^{(1)} \middle| \right\} = \max \left\{ 0.003, 5.291 \right\} = 5.291.$

The operation (R2) \leftrightarrow (R1) is performed to give the system 5.291x₁-6.130x₂=46.78

$$0.003x_1 + 59.14x_2 = 59.17$$
; $m_{21} = \frac{a_{21}^{(1)}}{a_{11}^{(1)}} = \frac{0.003}{5.291} = 0.0005670$

The operation (R2-m21R1) \rightarrow R1 reduce the system to

$$5.291x_1$$
- $6.130x_2$ = 46.78
 $59.14x_2$ = 59.14

$$\Rightarrow$$
 x₂=1 and x₁=1

(2) Gauss-Jordan elimination method

Example 5:

Use Gauss-Jordan elimination method to solve

$$4x_1$$
- $9x_2$ + $2x_3$ = 5
 $2x_1$ - $4x_2$ + $6x_3$ = 3
 x_1 - x_2 + $3x_3$ = 4.

Solution:

$$x_1 = 6.95$$
, $x_2 = 2.5$, $x_3 = -0.15$