Duality and Duality Theory

To every linear program there is a dual linear program with which it is intimately connected. We first state this duality for the standard programs. Suppose we have a Lpp:

$$Min Z = c^{T} x$$

$$S.t.: Ax \ge b \qquad \dots (*)$$

$$x \ge 0$$

Then the Lpp:

$$Max V = b^{T} y$$

$$S.t.: A^{T} y \le c$$

$$y \ge 0$$

$$\dots \dots (**)$$

is called the dual of the Lpp (*), (*) is called primal Lpp.

Therefore, the dual of the standard minimum problem (**) is the standard maximum problem (*).

Note:

If a standard problem and its dual are both feasible, then both are bounded feasible.

If there exists feasible x and y for a standard maximum problem (1) and its dual (2) such that $c_j x_j = b_i y_i$, then both are optimal for their respective problems.

Every Lpp has its dual.

Example : Consider a Lpp :

Min
$$Z = x_1 + 2x_2 - x_3$$

S.t.: $x_1 + x_2 - x_3 \le 1$
 $2x_1 - x_2 + x_3 \le 4$
 $x_1 + x_2 + x_3 \le 2$
 $x_1 - 2x_2 + x_3 \le 3$
 x_1 , x_2 , $x_3 \ge 0$

Find its dual Lpp.

Max
$$V = y_1 + 4y_2 + 2y_3 + 4y_4$$

S.t.: $y_1 + 2y_2 + y_3 + y_4 \ge 1$
 $y_1 - y_2 + 2y_3 - 2y_4 \ge 2$ (B)
 $-y_1 + y_2 + y_3 + y_4 \ge -1$
 y_1 , y_2 , y_3 , $y_4 \ge 0$

Some problems

* If the original problem in (*) is:

$$Max Z = \sum_{i=1}^{n} c_{i} x_{j}$$

Then we reversed it as:

$$Min V = - \sum_{j=1}^{n} c_j x_j$$

** If in the set of the constraints in (*) we have some constants of the type

$$\sum_{j=1}^{n} a_{ij} x_{j} \le b_{i} , i = 1, 2, 3, \dots, m$$

So we well reversed it by multiplying by (-1) as:

$$\sum_{i=1}^{n} -a_{ij}x_{j} \geq -b_{i}, i=1, 2, 3, ..., m$$

*** Also if we have some constraints of the type in (*):

$$\sum_{j=1}^{n} a_{ij} x_{j} = b_{i} , i = 1, 2, 3, \dots, m$$

Then we will write it as:

$$\sum_{j=1}^{n} a_{ij} x_{j} \leq b_{i} , i = 1, 2, 3, \dots, m$$

$$\sum_{i=1}^{n} a_{ij} x_{j} \ge b_{i} , i = 1, 2, 3, \dots, m$$

Example:

Consider a Lpp:

Min
$$Z = x_1 + 2x_2$$

 $S.t.: -x_1 + x_2 \le 10$
 $x_1 + x_2 \le 6$
 $x_1 + x_2 = 2$
 $x_1 + 3x_2 \ge 6$
 $x_1, x_2 \ge 0$ (*)

Solution:

Min
$$Z = x_1 + 2x_2$$

S.t.: $x_1 - x_2 \ge -10$
 $-x_1 - x_2 \ge -6$
 $x_1 + x_2 \ge 2$ (**)
 $-x_1 - x_2 \ge -2$
 $x_1 + 3x_2 \ge 6$
 x_1 , $x_2 \ge 0$

So the dual of this problem is:

$$\begin{aligned} & \textit{Max } V = -10y_1 - 6y_2 + 2y_3 - 2y_4 + 6y_5 \\ & \textit{S.t.}: \quad y_1 - y_2 + y_3 - y_4 + y_5 \le -1 \\ & \quad -3y_1 - y_2 + y_3 - y_4 + 3y_5 \le -2 \\ & \quad y_1, \quad y_2, \quad y_3, \quad y_4, \quad y_5 \ge 0 \end{aligned}$$