Definition:

A set s is convex if $x_1 \in s$, $x_2 \in s$ \Rightarrow $x = \lambda x_1 + (1 - \lambda) x_2 \in s$ for $0 \le \lambda \le 1$.

Geometrically, it means that if the points $A \in s$, $B \in s$, then every point on the line segment $A B \in s$.

$$x_2$$
 x x x_1

Note:
$$x = \lambda x_1 + (1 - \lambda)$$

on of
$$x_1$$
 and x_2 .

$$s$$
 غرى مثل B أيضا في

Theorem:

In a Lpp the set of feasible solution is convex.

Proof:

In general we have:

$$Max \ z = \sum_{j=1}^{n} c_{j} x_{j} \qquad(1)$$

$$\forall x_j \ge 0, j=1,2,...,m$$
(3)

Let x_1 and x_2 two basic feasible solution of this Lpp, then

$$Ax_1 = B$$
, $x_1 \ge 0$ (4)

$$Ax_2 = B$$
, $x_2 \ge 0$ (5)

Let $x = \lambda x_1 + (1 - \lambda)x_2$ be convex, combination of x_1 and x_2 , then we get:

$$A x = A \left(\lambda x_1 + (1 - \lambda) x_2 \right)$$

$$= \lambda A x_1 + (1 - \lambda) A x_2$$

$$= \lambda B + (1 - \lambda) B$$

$$= \lambda B + B - \lambda B$$

$$= B$$

$$\therefore A x = B \qquad \dots (6)$$

Hence x is also basic feasible solution, the only remaining thing is to show that $x \ge 0$.

Again $x = \lambda$ $x_1 + (1 - \lambda)$ x_2 . Since $0 \le \lambda \le 1$, λ is (+ive) and also, $x_1 \ge 0$, $x_2 \ge 0$, then:

$$\therefore x \ge 0$$

Hence x is feasible solution and x is convex.

Basic feasible solutions

Consider a system of linear equations Ax=b with m equations and n variables (assume $n \ge m$).

Definition.

A basic solution to a system of linear equations Ax=b is obtained by setting n-m variables equal to 0 and solving for the values of the remaining m variables. This assumes that setting n-m variables equal to 0 yields unique values for the remaining m variables or, equivalently, the columns for the remaining m variables are linearly independent.

The variables that are set to zero are called **non-basic variables**, and the remaining ones are called **basic variables**. If an LP in standard form has m constraints and n variables, then the maximal number of basic solution is :

$$\binom{n}{m} = \frac{n!}{(n-m)! \, m!}$$

Definition.

Any basic solution in which all variables are nonnegative is a **basic feasible solution**. Otherwise, the basic solution is infeasible.

Definition (1):

A feasible solution to Lpp is a vector $(x_1, x_2, x_3, \dots, x_n)$ which satisfies (2) and (3).

Definition (2):

A basic solution of (2) is a solution obtained by setting n-m variables equal to zero and solving for the remaining in variables provided that the determinant of the coefficient of these m variables is non-zero. the m variables are called basic variables.

Definition (3):

A basic feasible solution is a basic solution which also satisfies eq.(3). i.e., all basic variables are non-negative.

Definition (4):

Anon-degenerate basic feasible solution is a basic feasible solution with exactly m positive x_i .

Example:

$$Max \quad z = x_1 + 2x_2$$
$$x_1 - 2x_2 \le 3$$
$$x_1 + x_2 \le 3$$
$$x_i \ge 0, \forall i$$

How to find the initial basic feasible solution (b.f.s) for Lpp:

Max
$$z = x_1 + 2x_2$$

 $x_1 - 2x_2 + x_3 = 3$ (1)
 $x_1 + x_2 + x_4 = 3$ (2)
 $x_i \ge 0, \forall i$

From above we get:

$$n=4$$
 , $M=2$

Then,

$$\binom{4}{2} = \frac{4!}{2!(4-2)!} = 6$$

The solutions are:

1.
$$(0,0,3,3)$$

2. $(0,-3/2,0,9/2)$
3. $(0,-3/2,0,9/2)$
B.f.s $z=0$ $(\sqrt{})$
 $z=-3$ (\times)

3.
$$(0,3,9,0)$$
 $z=6 (\sqrt{)}$

4.
$$(3,0,0,0)$$
 $z=3 (\sqrt{)}$

5.
$$(3,0,0,0)$$
 $z=3 (\sqrt{)}$

6.
$$(3,0,0,0)$$
 $z=3 (\sqrt{)}$

$$z=3$$
 الحل الأمثل $z=3$

*A basic feasible solution is non-degenerate if all of its basic variables are positive.

*A basic feasible solution is degenerate if some of its basic variables are equal to zero.

Theorem 3 A point in the feasible region of an LP-problem is an extreme point if and only if it is a basic feasible solution to the LP.