DEPARTMENT OF OPERATIONS RESEARCH AND INTELLIGENT TECHNIQUES

DR. EMAN TARIQ & DR. ELAF SULAIMAN

From (i) and (ii), or

$$4-2x_1=8-2x_2$$

and from (iii), $x_2 + x_1 = 2$, which give $x_1 = 0$, $x_2 = 2$ and $\lambda = 4$.

The sufficient conditions for determining whether the above solution results in maximization

EXAMPLE

Solve the following NLPP:

Maximize
$$Z = 4x_1 + 6x_2 - 2x_1^2 - 2x_1x_2 - 2x_2^2$$
, subject to $x_1 + 2x_2 = 2$, $x_1, x_2 \ge 0$.

Solution

The objective function as well as the constraint are differentiable w.r.t. x_1 and x_2 . The constraint can be replaced by another differentiable function such as,

$$x_1 + 2x_2 - 2 = 0.$$

The Lagrangean function can be written as

$$L(x_1, x_2, \lambda) = 4x_1 + 6x_2 - 2x_1^2 - 2x_1x_2 - 2x_2^2 - \lambda(x_1 + 2x_2 - 2).$$

The necessary conditions for a maxima or minima of the objective function are

DR. EMAN TARIQ & DR. ELAF SULAIMAN

$$\begin{aligned} \frac{\partial \mathbf{L}}{\partial x_1} &= 0, \\ \frac{\partial \mathbf{L}}{\partial x_2} &= 0, \\ \frac{\partial \mathbf{L}}{\partial \lambda} &= 0, \\ \text{or} \\ 4 - 4x_1 - 2x_2 - \lambda &= 0, \\ 6 - 2x_1 - 4x_2 - 2\lambda &= 0, \\ \text{and} \quad -(x_1 + 2x_2 - 2) &= 0. \end{aligned}$$

and

Solving (i) and (ii), we get $x_1 = 1/3$ which when substituted in (iii) gives $x_2 = 5/6$ and for this solution $\lambda = 1$.

EXAMPLE

Solve the following N.L.P.P.:

Maximize
$$Z = 5x_1 + x_2 - (x_1 - x_2)^2$$
, subject to $x_1 + x_2 = 4$, $x_1, x_2 \ge 0$.

Solution

The Lagrangean function for the above problem can be formed as

$$L(X, \lambda) = 5x_1 + x_2 - (x_1 - x_2)^2 - \lambda(x_1 + x_2 - 4)$$

THe necessary conditions for the objective function to be maximum or minimum are

$$\frac{\partial L}{\partial x_1} = 5 - 2(x_1 - x_2) - \lambda = 0,$$

$$\frac{\partial L}{\partial x_2} = 1 + 2(x_1 - x_2) - \lambda = 0,$$

$$\frac{\partial L}{\partial \lambda} = -(x_1 + x_2 - 4) = 0.$$