
+

William Stallings

Computer Organization

and Architecture

10th Edition

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

+
Chapter 1
Basic Concepts and

Computer Evolution

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Computer Architecture

•The operational units and
their interconnections
that realize the
architectural
specifications

•Hardware details
transparent to the
programmer, control
signals, interfaces
between the computer
and peripherals, memory
technology used

• Instruction set, number of
bits used to represent
various data types, I/O
mechanisms, techniques
for addressing memory

•Attributes of a system
visible to the
programmer

•Have a direct impact on
the logical execution of a
program

Computer
Architecture

Architectural
attributes
include:

Computer
Organization

Organizational
attributes
include:

Computer Organization

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
IBM System

 IBM System/370 architecture

 Was introduced in 1970

 Included a number of models

 New models are introduced with

improved technology, but retain the

same architecture so that the

customer’s software investment is
protected

 Architecture has survived to this day as

the architecture of IBM’s mainframe
product line

370 Architecture

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
Structure and Function

 Hierarchical system

 Set of interrelated

subsystems

 Hierarchical nature of complex

systems is essential to both

their design and their

description

 Designer need only deal with

a particular level of the system

at a time

 Concerned with structure

and function at each level

 Structure

 The way in which

components relate to each

other

 Function

 The operation of individual

components as part of the

structure

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
Function

 There are four basic functions that a computer can perform:

 Data processing

 Processor

 Data storage

 Short-term

 Long-term

 Data movement

 Input-output (I/O) - when data are received from or delivered to

a device (peripheral) that is directly connected to the computer

 Data communications – when data are moved over longer

distances, to or from a remote device (e-mail)

 Control

 A control unit manages the computer’s resources and manages
the performance of its functional parts in response to

instructions
© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Structure

Figure 1.1 A Top-Down View of a Computer

Main
memory

I/O

CPU

COMPUTER

System
Bus

ALURegisters

Control
Unit

CPU

Internal
Bus

Control Unit
Registers and
Decoders

CONTROL
UNIT

Sequencing
Logic

Control
Memory

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
 CPU – controls the operation of

the computer and performs its

data processing functions

 Main Memory – stores data

 I/O – moves data between the

computer and its external

environment

 System Interconnection –

some mechanism that provides

for communication among CPU,

main memory, and I/O

There are four

main structural

components

of the computer:

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
CPU

 Control Unit

 Controls the operation of the CPU

and hence the computer

 Arithmetic and Logic Unit (ALU)

 Performs the computer’s data
processing function

 Registers

 Provide storage internal to the CPU

 CPU Interconnection

 Some mechanism that provides for

communication among the control

unit, ALU, and registers

Major structural

components:

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
Multicore Computer Structure

 Central processing unit (CPU)

 Portion of the computer that fetches and executes instructions

 Consists of an ALU, a control unit, and registers

 Referred to as a processor in a system with a single processing unit

 Core

 An individual processing unit on a processor chip

 May be equivalent in functionality to a CPU on a single-CPU system

 Specialized processing units are also referred to as cores

 Processor

 A physical piece of silicon containing one or more cores

 Is the computer component that interprets and executes instructions

 Referred to as a multicore processor if it contains multiple cores

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
Cache Memory

 Multiple layers of memory between the processor and main

memory

 Is smaller and faster than main memory

 Used to speed up memory access by placing in the cache

data from main memory that is likely to be used in the near

future

 A greater performance improvement may be obtained by

using multiple levels of cache, with level 1 (L1) closest to the

core and additional levels (L2, L3, etc.) progressively farther

from the core

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Figure 1.2 Simplified View of Major Elements of a Multicore Computer

MOTHERBOARD

PROCESSOR CHIP

CORE

Processor
chip

Main memory chips

I/O chips

Core

L3 cache

Instruction
logic

L1 I-cache

L2 instruction
cache

L2 data
cache

L1 data cache

Arithmetic
and logic

unit (ALU)
Load/

store logic

L3 cache

Core Core Core

Core Core Core Core

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
History of Computers

 Vacuum tubes were used for digital logic

elements and memory

 IAS computer

 Fundamental design approach was the stored program concept

 Attributed to the mathematician John von Neumann

 First publication of the idea was in 1945 for the EDVAC

 Design began at the Princeton Institute for Advanced Studies

 Completed in 1952

 Prototype of all subsequent general-purpose computers

First Generation: Vacuum Tubes

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
First Generation: Vacuum Tubes

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Control
circuits

Addresses

Control
signals

Instructions
and data

AC: Accumulator register
MQ: multiply-quotient register
MBR: memory buffer register
IBR: instruction buffer register
PC: program counter
MAR: memory address register
IR: insruction register

Instructions
and data

M(0)
M(1)
M(2)
M(3)
M(4)

M(4095)
M(4093)
M(4092)

MBR

Arithmetic-logic unit (CA)

Central processing unit (CPU)

Program control unit (CC)

Figure 1.6 IAS Structure

Input-
output

equipment
(I, O)

Main
memory

(M)

AC MQ

Arithmetic-logic
circuits

IBRPC

IRMAR

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

(a) Number wordsign bit

0 39

(b) Instruction word

Figure 1.7 IAS Memory Formats

opcode (8 bits) address (12 bits)

left instruction (20 bits)

0 8 20 28 39

1

right instruction (20 bits)

opcode (8 bits) address (12 bits)

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+ Registers

• Contains a word to be stored in memory or sent to the I/O unit

• Or is used to receive a word from memory or from the I/O unit

Memory buffer register
(MBR)

• Specifies the address in memory of the word to be written from
or read into the MBR

Memory address
register (MAR)

• Contains the 8-bit opcode instruction being executed Instruction register (IR)

• Employed to temporarily hold the right-hand instruction from a
word in memory

Instruction buffer
register (IBR)

• Contains the address of the next instruction pair to be fetched
from memory Program counter (PC)

• Employed to temporarily hold operands and results of ALU
operations

Accumulator (AC) and
multiplier quotient (MQ)

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Start

Is next
instruction

in IBR?
MAR PC

MBR M(MAR)

IR IBR (0:7)
MAR IBR (8:19)

IR MBR (20:27)
MAR MBR (28:39)

Left
instruction
required?

IBR MBR (20:39)
IR MBR (0:7)

MAR MBR (8:19)

PC PC + 1

Yes

Yes

Yes

No

No

No

M(X) = contents of memory location whose addr ess is X
(i:j) = bits i through j

No memory
access

required

Decode instruction in IR

AC M(X) Go to M(X, 0:19) If AC > 0 then
go to M(X, 0:19)

AC AC + M(X)

Is AC > 0?

MBR M(MAR) MBR M(MAR)PC MAR

AC MBR AC AC + MBR

Fetch
cycle

Execution
cycle

Figure 1.8 Partial Flowchart of IAS Operation

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Instruction Type Opcode
Symbolic

Representation Description

Data transfer

00001010 LOAD MQ Transfer contents of register MQ to the
accumulator AC

00001001 LOAD MQ,M(X) Transfer contents of memory location X to
MQ

00100001 STOR M(X) Transfer contents of accumulator to memory
location X

00000001 LOAD M(X) Transfer M(X) to the accumulator
00000010 LOAD –M(X) Transfer –M(X) to the accumulator
00000011 LOAD |M(X)| Transfer absolute value of M(X) to the

accumulator
00000100 LOAD –|M(X)| Transfer –|M(X)| to the accumulator

Unconditional
branch

00001101 JUMP M(X,0:19) Take next instruction from left half of M(X)
00001110 JUMP M(X,20:39) Take next instruction from right half of M(X)

Conditional branch

00001111 JUMP+ M(X,0:19) If number in the accumulator is nonnegative,
take next instruction from left half of M(X)

JU
MP

+

M(X

,20:
39)

If number in the
accumulator is nonnegative,

take next instruction from

right half of M(X)

Arithmetic

00000101 ADD M(X) Add M(X) to AC; put the result in AC
00000111 ADD |M(X)| Add |M(X)| to AC; put the result in AC
00000110 SUB M(X) Subtract M(X) from AC; put the result in AC
00001000 SUB |M(X)| Subtract |M(X)| from AC; put the remainder

in AC
00001011 MUL M(X) Multiply M(X) by MQ; put most significant

bits of result in AC, put least significant bits
in MQ

00001100 DIV M(X) Divide AC by M(X); put the quotient in MQ
and the remainder in AC

00010100 LSH Multiply accumulator by 2; i.e., shift left one
bit position

00010101 RSH Divide accumulator by 2; i.e., shift right one
position

Address modify

00010010 STOR M(X,8:19) Replace left address field at M(X) by 12
rightmost bits of AC

00010011 STOR M(X,28:39) Replace right address field at M(X) by 12
rightmost bits of AC

Table 1.1

The IAS

Instruction Set

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

(Table can be found on page 17 in the textbook.)

+
History of Computers

 Smaller

 Cheaper

 Dissipates less heat than a vacuum tube

 Is a solid state device made from silicon

 Was invented at Bell Labs in 1947

 It was not until the late 1950’s that fully transistorized
computers were commercially available

Second Generation: Transistors

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
Table 1.2

Computer Generations

Generation
Approximate

Dates Technology

Typical Speed

(operations per second)

1 1946–1957 Vacuum tube 40,000

2 1957–1964 Transistor 200,000

3 1965–1971 Small and medium scale
integration

1,000,000

4 1972–1977 Large scale integration 10,000,000

5 1978–1991 Very large scale integration 100,000,000

6 1991- Ultra large scale integration >1,000,000,000

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
Second Generation Computers

Introduced:

 More complex arithmetic and logic units and

control units

 The use of high-level programming languages

 Provision of system software which provided the

ability to:

 Load programs

 Move data to peripherals

 Libraries perform common computations

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

CPU

Memory

Figure 1.9 An IBM 7094 Configuration

IBM 7094 computer Peripheral devices

Data
channel

Mag tape
units

Card
punch

Line
printer

Card
reader

Drum

Disk

Disk

Hyper-
tapes

Teleprocessing
equipment

Data
channel

Data
channel

Data
channel

Multi-
plexor

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

1.Several differences from

the IAS computer are
worth noting. The most
important of these is the
use of data channels .
A data channel is an
independent I/O module
with its own processor and

instruction set

2. In a computer system
with such devices, the CPU
does not execute

detailed I/O instructions.
Such instructions are stored
in a main memory to be

executed by a special-
purpose processor in the
data channel itself.

Third Generation: Integrated Circuits

History of Computers

 1958 – the invention of the integrated circuit

 Discrete component

 Single, self-contained transistor

 Manufactured separately, packaged in their own containers, and

soldered or wired together onto masonite-like circuit boards

 Manufacturing process was expensive and cumbersome

 The two most important members of the third generation

were the IBM System/360 and the DEC PDP-8

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Boolean
logic

function
Input

Activate
signal

(a) Gate

Figure 1.10 Fundamental Computer Elements

Output
Binary
storage

cell
Input

Read

Write

(b) Memory cell

Output

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

A gate is a device that
implements a simple Boolean or logical function,
such as IF A AND B ARE TRUE
THEN C IS TRUE (AND gate). Such devices are
called gates because they control
data flow in much the same way that canal gates
control the flow of water

The memory cell is a device
that can store one bit of data;
that is, the device can be in
one of two stable states at any
time

+
Integrated

Circuits

 A computer consists of gates,

memory cells, and

interconnections among these

elements

 The gates and memory cells

are constructed of simple

digital electronic components

 Data storage – provided by
memory cells

 Data processing – provided by
gates

 Data movement – the paths
among components are used
to move data from memory to
memory and from memory
through gates to memory

 Control – the paths among
components can carry control
signals

 Exploits the fact that such
components as transistors,
resistors, and conductors can be
fabricated from a
semiconductor such as silicon

 Many transistors can be
produced at the same time on a
single wafer of silicon

 Transistors can be connected
with a processor metallization to
form circuits

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

• Control: The paths among
components can carry control
signals. For example,
a gate will have one or two data
inputs plus a control signal input
that activates
the gate. When the control
signal is ON, the gate performs
its function on the
data inputs and produces a data
output. Similarly, the memory
cell will store
the bit that is on its input lead
when the WRITE control signal
is ON and will
place the bit that is in the cell on
its output lead when the READ
control signal
is ON.

+
Integrated

Circuits

 A computer consists of gates,

memory cells, and

interconnections among these

elements

 The gates and memory cells

are constructed of simple

digital electronic components

 Data storage – provided by
memory cells

 Data processing – provided by
gates

 Data movement – the paths
among components are used
to move data from memory to
memory and from memory
through gates to memory

 Control – the paths among
components can carry control
signals

 Exploits the fact that such
components as transistors,
resistors, and conductors can be
fabricated from a
semiconductor such as silicon

 Many transistors can be
produced at the same time on a
single wafer of silicon

 Transistors can be connected
with a processor metallization to
form circuits

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Wafer

Chip

Gate

Figure 1.11 Relationship Among Wafer, Chip, and Gate

Packaged
chip

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Figure 1.11 depicts the key
concepts in an integrated
circuit. A thin wafer of
silicon is divided into a matrix
of small areas, each a few
millimeters square. The
identical circuit pattern is
fabricated in each area, and the
wafer is broken up into
chips. Each chip consists of
many gates and/or memory
cells plus a number of input
and output attachment points.
This chip is then packaged in
housing that protects
it and provides pins for
attachment to devices beyond
the chip. A number of these
packages can then be
interconnected on a printed
circuit board to produce larger
and more complex circuits.

Figure 1 .1 2 Grow th in Transistor Count on I ntegrated Circuits

(DRAM m em ory)

1
1947

Fi
rs
t
w
or

ki
ng

tr
an

si
st
or

M
oo

re
’s

la
w

pr
om

ul
ga

te
d

In
ve

nt
io
n
of

in
te
gr

at
ed

 c
ir
cu

it

50 55 60 65 70 75 80 85 90 95 2000 05 11

10

100

1,000

10.000

100,000

10 m

100 m

1 bn

10 bn

100 bn

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Moore’s Law

1965; Gordon Moore – co-founder of Intel

Observed number of transistors that could be
put on a single chip was doubling every year

The pace slowed to a
doubling every 18

months in the 1970’s
but has sustained

that rate ever since

Consequences of Moore’s law:

The cost of
computer logic

and memory
circuitry has

fallen at a
dramatic rate

The electrical
path length is

shortened,
increasing
operating

speed

Computer
becomes smaller

and is more
convenient to use

in a variety of
environments

Reduction in
power and

cooling
requirements

Fewer
interchip

connections

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
IBM System/360

 By 1964, IBM had a firm grip on the computer market with its 7000 series of machines.

In that year, IBM announced the System/360, a new family of computer products.

Although the announcement itself was no surprise, it contained some unpleasant news

for current IBM customers: the 360 product line was incompatible with older IBM

machines. Thus, the transition to the 360 would be difficult for the current customer

base

 This was a bold step by IBM, but one IBM felt was necessary to break out of some of the

constraints of the 7000 architecture and to produce a system capable of evolving with

the new integrated circuit technology

 The 360 was the success of the decade and cemented IBM as the overwhelmingly

dominant computer vendor

 The architecture remains to this day the architecture of IBM’s mainframe computers

 The models were compatible in the sense that a program written for one model should

be capable of being executed by another model in the series, with only a difference in

the time it takes to execute

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+ Family Characteristics

Similar or
identical

instruction set

Similar or
identical
operating

system

Increasing
speed

Increasing
number of I/O

ports

Increasing
memory size

Increasing cost

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Figure 1.13 PDP-8 Bus Structure

Console
controller

CPU

Omnibus

Main
memory

I/O
module

I/O
module

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

consists of 96 separate signal paths, used to carry control, address, and data signals. Because all system
components share a common set of signal paths, their use can be controlled by the CPU. This
architecture is highly flexible, allowing modules to be plugged into the bus to create various
configurations. It is only in recent years that the bus structure has given way to a structure known as
Point-to-point interconnect

+

Later

Generations

LSI
Large

Scale

Integration

VLSI
Very Large

Scale

Integration

ULSI
Ultra Large

 Scale

Integration

Semiconductor

Memory

Microprocessors
© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Semiconductor Memory

Since 1970 semiconductor memory has been through 13 generations

Each generation has provided four times the storage density of the previous generation, accompanied
by declining cost per bit and declining access time

In 1974 the price per bit of semiconductor memory dropped below the price per bit
of core memory

There has been a continuing and rapid decline in
memory cost accompanied by a corresponding

increase in physical memory density

Developments in memory and processor
technologies changed the nature of computers in

less than a decade

In 1970 Fairchild produced the first relatively capacious semiconductor memory

Chip was about the size
of a single core

Could hold 256 bits of
memory

Non-destructive Much faster than core

+
Microprocessors

 The density of elements on processor chips continued to rise

 More and more elements were placed on each chip so that fewer and fewer

chips were needed to construct a single computer processor

 1971 Intel developed 4004

 First chip to contain all of the components of a CPU on a single chip

 Birth of microprocessor

 This evolution can be seen most easily in the number of bits that the processor

deals with at a time. There is no clear-cut measure of this, but perhaps the best

measure is the data bus width: the number of bits of data that can be brought into

or sent out of the processor at a time. Another measure is the number of bits in the

accumulator or in the set of general-purpose registers.

 1972 Intel developed 8008

 First 8-bit microprocessor

 1974 Intel developed 8080

 First general purpose microprocessor

 Faster, has a richer instruction set, has a large addressing capability

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Evolution of Intel Microprocessors

(a) 1970s Processors

 4004 8008 8080 8086 8088

Introduced 1971 1972 1974 1978 1979

Clock speeds 108 kHz 108 kHz 2 MHz 5 MHz, 8 MHz, 10
MHz

5 MHz, 8 MHz

Bus width 4 bits 8 bits 8 bits 16 bits 8 bits
Number of
transistors

2,300 3,500 6,000 29,000 29,000

Feature size
(µm)

10 8 6 3 6

Addressable
memory

640 Bytes 16 KB 64 KB 1 MB 1 MB

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Evolution of Intel Microprocessors

(b) 1980s Processors

 80286 386TM DX 386TM SX
486TM DX

CPU

Introduced 1982 1985 1988 1989

Clock speeds 6 MHz - 12.5
MHz

16 MHz - 33
MHz

16 MHz - 33
MHz

25 MHz - 50
MHz

Bus width 16 bits 32 bits 16 bits 32 bits
Number of transistors

134,000 275,000 275,000 1.2 million

Feature size (µm) 1.5 1 1 0.8 - 1

Addressable
memory

16 MB 4 GB 16 MB 4 GB

Virtual
memory

1 GB 64 TB 64 TB 64 TB

Cache — — — 8 kB

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Evolution of Intel Microprocessors

(c) 1990s Processors

 486TM SX Pentium Pentium Pro Pentium I I
Introduced 1991 1993 1995 1997

Clock speeds 16 MHz - 33
MHz

60 MHz - 166
MHz,

150 MHz - 200
MHz

200 MHz - 300
MHz

Bus width 32 bits 32 bits 64 bits 64 bits
Number of
transistors

1.185 million 3.1 million 5.5 million 7.5 million

Feature size (µm) 1 0.8 0.6 0.35
Addressable
memory

4 GB 4 GB 64 GB 64 GB

Virtual memory 64 TB 64 TB 64 TB 64 TB

Cache 8 kB 8 kB 512 kB L1 and 1
MB L2

512 kB L2

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Evolution of Intel Microprocessors

(d) Recent Processors

 Pentium I I I Pentium 4
Core 2 Duo Core i7 EE

4960X
Introduced 1999 2000 2006 2013
Clock speeds 450 - 660 MHz 1.3 - 1.8 GHz 1.06 - 1.2 GHz 4 GHz

Bus
wid
th

64 bits 64 bits 64 bits 64 bits

Number of
transistors

9.5 million 42 million 167 million 1.86 billion

Feature size (nm) 250 180 65 22
Addressable
memory

64 GB 64 GB 64 GB 64 GB

Virtual memory 64 TB 64 TB 64 TB 64 TB

Cache 512 kB L2 256 kB L2 2 MB L2 1.5 MB L2/15
MB L3

Number of cores 1 1 2 6

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
The Evolution of the Intel x86

Architecture

 Two processor families are the Intel x86 and the ARM

architectures

 Current x86 offerings represent the results of decades of

design effort on complex instruction set computers (CISCs)

 An alternative approach to processor design is the reduced

instruction set computer (RISC)

 ARM architecture is used in a wide variety of embedded

systems and is one of the most powerful and best-designed

RISC-based systems on the market

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Highlights of the Evolution of the Intel Product Line:

8080

• World’s first
general-purpose
microprocessor

• 8-bit machine, 8-
bit data path to
memory

• Was used in the
first personal
computer

8086

• A more powerful 16-
bit machine

• Wider data path and
larger registers

• Has an instruction
cache, or queue, that
prefetches a few
instructions before
they are executed

• The first appearance
of the x86
architecture

• The 8088 was a
variant of this
processor and used
in IBM’s first
personal computer
(securing the
success of Intel

80286

• Extension of the
8086 enabling
addressing a 16-
MB memory
instead of just
1MB

80386

• Intel’s first 32-bit
machine

• First Intel
processor to
support
multitasking
meaning it could
run multiple
programs at the
same time.

80486

• Introduced the
use of much
more
sophisticated
and powerful
cache
technology and
sophisticated
instruction
pipelining

• Also offered a
built-in math
coprocessor
which offloading
complex math
operations from the
main CPU.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Highlights of the Evolution of the

Intel Product Line:

• Intel introduced the use of superscalar techniques, which allow multiple instructions to execute in parallel

Pentium

• Continued the move into superscalar organization with aggressive use of register renaming, branch
prediction, data flow analysis, and speculative execution

Pentium Pro

• Incorporated Intel MMX technology, which is designed specifically to process video, audio, and graphics
data efficiently

Pentium II

• Incorporated additional floating-point instructions

• Streaming SIMD Extensions (SSE) instruction set extension added 70 new instructions designed to increase
performance when exactly the same operations are to be performed on multiple data objects

Pentium III

• Includes additional floating-point and other enhancements for multimedia

Pentium 4

• First Intel x86 micro-core referring to the implementation of two cores on a single chip.

Core

• Extends the Core architecture to 64 bits

• Core 2 Quad provides four cores on a single chip

• More recent Core offerings have up to 10 cores per chip

• An important addition to the architecture was the Advanced Vector Extensions instruction set

Core 2

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
Embedded Systems

 Embedded systems are special-purpose computers built
into devices not generally considered to be computers

 The use of electronics and software within a product

 Billions of computer systems are produced each year that
are embedded within larger devices

 Today many devices that use electric power have an
embedded computing system

 Often embedded systems are tightly coupled to their
environment

 This can give rise to real-time constraints imposed by the
need to interact with the environment

 Constraints such as required speeds of motion, required
precision of measurement, and required time durations,
dictate the timing of software operations

 If multiple activities must be managed simultaneously this
imposes more complex real-time constraints

 © 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Memory

Custom
logic

Human
interface

Diagnostic
port

Processor

D/A
Conversion

Actuators/
indicators

A/D
conversion

Sensors

Figure 1.14 Possible Organization of an Embedded System

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Embedded systems often interact (sense, manipulate, and
communicate) with external world through sensors and actuators

The human interface may
be as simple as a flashing
light or as complicated as
real-time robotic vision. In
many cases, there is no
human interface The diagnostic

port may be used
for diagnosing
the system that is
being controlled Software often has a

fixed function and is
specific to the
application

Even with nominally fixed
function software, the ability
to field upgrade to fix
bugs, to improve security,
and to add functionality, has
become very important
for embedded system

+
The Internet of Things (IoT)

 Term that refers to the expanding interconnection of smart devices, ranging
from appliances to tiny sensors

 Is primarily driven by deeply embedded devices

 Generations of deployment culminating in the IoT:

 Information technology (IT)

 PCs, servers, routers, firewalls, and so on, bought as IT devices by enterprise IT
people and primarily using wired connectivity

 Operational technology (OT)

 Machines/appliances with embedded IT built by non-IT companies, such as
medical machinery, SCADA, process control, and kiosks, bought as appliances by
enterprise OT people and primarily using wired connectivity

 Personal technology

 Smartphones, tablets, and eBook readers bought as IT devices by consumers
exclusively using wireless connectivity and often multiple forms of wireless
connectivity

 Sensor/actuator technology

 Single-purpose devices bought by consumers, IT, and OT people exclusively
using wireless connectivity, generally of a single form, as part of larger systems

 It is the fourth generation that is usually thought of as the IoT and it is marked
by the use of billions of embedded devices

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+

 There are two general

approaches to developing an

embedded operating system

(OS):

 Take an existing OS and

adapt it for the embedded

application

 Design and implement an

OS intended solely for

embedded use

 Application processors

 Defined by the processor’s ability
to execute complex operating
systems

 General-purpose in nature

 An example is the smartphone –
the embedded system is designed
to support numerous apps and
perform a wide variety of functions

 Dedicated processor

 Is dedicated to one or a small
number of specific tasks required
by the host device

 Because such an embedded system
is dedicated to a specific task or
tasks, the processor and associated
components can be engineered to
reduce size and cost

Embedded

Operating

Systems

Application Processors

versus

Dedicated Processors

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
Microcontroller

 Also called a “computer on a chip,” billions of microcontroller units are
embedded each year in myriad products from toys to appliances to
automobiles. For example, a single vehicle can use 70 or more
microcontrollers. Typically, especially for the smaller, less expensive
microcontrollers, they are used as dedicated processors for specific tasks. For
example, microcontrollers are heavily utilized in automation processes. By
providing simple reactions to input, they can control machinery, turn fans on
and off, open and close valves, and so forth. They are integral parts of
modern industrial technology and are among the most inexpensive ways to
produce machinery that can handle extremely complex functionalities.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Figure 1.15 Typical Microcontroller Chip Elements

A/D
converter

Analog data
acquisition

Temporary
data

Processor

System
bus

RAM

D/A
converter

ROM

Serial I/O
ports

EEPROM

Parallel I/O
ports

TIMER

Program
and data

Permanent
data

Timing
functions

Analog data
transmission

Send/receive
data

Peripheral
interfaces

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
Microprocessor vs Microcontroller

 As we have seen, early microprocessor chips included registers, an ALU, and
some sort of control unit or instruction processing logic. As transistor density
increased, it became possible to increase the complexity of the instruction set
architecture, and ultimately to add memory and more than one processor.
Contemporary microprocessor chips, as shown in Figure 1.2, include multiple
cores and a substantial amount of cache memory.

 A microcontroller chip makes a substantially different use of the logic space
available. Figure 1.15 shows in general terms the elements typically found on a
microcontroller chip. As shown, a microcontroller is a single chip that contains
the processor, non-volatile memory for the program (ROM), volatile memory for
input and output (RAM), a clock, and an I/O control unit. The processor portion
of the microcontroller has a much lower silicon area than other microprocessors
and much higher energy efficiency

 Microcontrollers come in a range of physical sizes and processing power.
Processors range from 4-bit to 32-bit architectures. Microcontrollers tend to be
much slower than microprocessors, typically operating in the MHz range rather
than the GHz speeds of microprocessors. Another typical feature of a
microcontroller is that it does not provide for human interaction. The
microcontroller is programmed for a specific task, embedded in its device, and
executes as and when required

 © 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
Deeply Embedded Systems

 Subset of embedded systems

 Has a processor whose behavior is difficult to observe both by the
programmer and the user

 Uses a microcontroller rather than a microprocessor

 Is not programmable once the program logic for the device has been
burned into ROM

 Has no interaction with a user

 Dedicated, single-purpose devices that detect something in the
environment, perform a basic level of processing, and then do
something with the results

 Often have wireless capability and appear in networked configurations,
such as networks of sensors deployed over a large area

 Typically have extreme resource constraints in terms of memory,
processor size, time, and power consumption

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

ARM

Refers to a processor architecture that has evolved from
RISC design principles and is used in embedded systems

Family of RISC-based microprocessors and microcontrollers
designed by ARM Holdings, Cambridge, England

Chips are high-speed processors that are known for their
small die size and low power requirements

Probably the most widely used embedded processor
architecture and indeed the most widely used processor

architecture of any kind in the world

Acorn RISC Machine/Advanced RISC Machine

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
RISC VS CISC

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+

ARM Products

Cortex-
A/Cortex-
A50

Cortex-R

Cortex-M

• Cortex-M0

• Cortex-M0+

• Cortex-M3

• Cortex-M4

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Figure 1.16 Typical Microcontroller Chip Based on Cortex-M3

Cortex-M3 Core

Microcontroller Chip

Cortex-M3
Processor

NVIC
interface

ETM
interface

Hardware
divider

32-bit
multiplier

32-bit ALU

Control
logic

Thumb
decode

Instruction
interface

Data
interface

ICode
interface

Debug logic

ARM
core

DAP

NVIC ETM

Memory
protection unit

Bus matrix

SRAM &
peripheral I/F

Security Analog Interfaces Timers &Triggers Parallel I/O Ports Serial Interfaces

Peripheral bus

Core and memoryClock managementEnergy management

Cortex-M3 processor
Memory
protec-

tion unit

Flash
memory
64 kB

Voltage
regula-

tor

Power-
on reset

Brown-
out de-
tector

Voltage
compar-

ator

High fre-
quency RC
oscillator

Low fre-
quency RC
oscillator

High freq
crystal

oscillator

Low freq
crystal

oscillator

SRAM
memory
64 kB

Debug
inter-
face

DMA
control-

ler

Pulse
counter

Watch-
dog tmr

Low
energy

Real
time ctr

Periph
bus int

Timer/
counter

General
purpose

I/O

External
Inter-
rupts

UART

USART

Low-
energy
UART

USB
Pin

reset

32-bit bus

A/D
con-

verter

Hard-
ware
AES

D/A
con-

verter

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
Cloud Computing

 NIST defines cloud computing as:

 “A model for enabling ubiquitous, convenient,
 on-demand network access to a shared pool of
 configurable computing resources that can be
 rapidly provisioned and released with minimal
 management effort or service provider interaction.”

 You get economies of scale, professional network
management, and professional security management

 The individual or company only needs to pay for the storage
capacity and services they need

 Cloud provider takes care of security

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Cloud Networking

 Refers to the networks and network management functionality that must
be in place to enable cloud computing

 One example is the provisioning of high-performance and/or high-
reliability networking between the provider and subscriber

 The collection of network capabilities required to access a cloud,
including making use of specialized services over the Internet, linking
enterprise data center to a cloud, and using firewalls and other network
security devices at critical points to enforce access security policies

Cloud Storage

 Subset of cloud computing

 Consists of database storage and database applications hosted
remotely on cloud servers

 Enables small businesses and individual users to take advantage of data
storage that scales with their needs and to take advantage of a variety of
database applications without having to buy, maintain, and manage the
storage assets

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
SaaS

 Software as a service (SaaS) As the name implies, a SaaS cloud provides service to customers

in the form of software, specifically application software, running on and accessible in the

cloud. SaaS follows the familiar model of Web services, in this case applied to cloud

resources. SaaS enables the customer to use the cloud provider’s applications running on the

provider’s cloud infrastructure. The applications are accessible from various client devices

through a simple interface such as a Web browser. Instead of obtaining desktop and server

licenses for software products it uses, an enterprise obtains the same functions from the cloud

service. SaaS saves the complexity of software installation, maintenance, upgrades, and

patches. Examples of services at this level are Gmail, Google’s e-mail service, and

Salesforce.com, which help firms keep track of their customers.

 Common subscribers to SaaS are organizations that want to provide their employees with

access to typical office productivity software, such as document management and email.

Individuals also commonly use the SaaS model to acquire cloud resources. Typically,

subscriber use specific applications on demand. The cloud provider also usually offers data-

related features such as automatic backup and data sharing between subscribers.

 © 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
PaaS

 Platform as a service (PaaS) A PaaS cloud provides service to
customers in the form of a platform on which the customer’s
applications can run. PaaS enables the customer to deploy onto the
cloud infrastructure containing customer- created or acquired
applications. A PaaS cloud provides useful software building blocks,
plus a number of development tools, such as programming languages,
run- time environments, and other tools that assist in deploying new
applications. In effect, PaaS is an operating system in the cloud. PaaS
is useful for an organization that wants to develop new or tailored
applications while paying for the needed computing resources only as
needed and only for as long as needed. Google App Engine and the
Salesforce1 Platform from Salesforce.com are examples of PaaS.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
laaS

 Infrastructure as a service (IaaS) With IaaS, the customer has access
to the underlying cloud infrastructure. IaaS provides virtual machines
and other abstracted hardware and operating systems, which may be
controlled through a service application programming interface (API).
IaaS offers the customer processing, storage, networks, and other
fundamental computing resources so that the customer is able to
deploy and run arbitrary software, which can include operating
systems and applications. IaaS enables customers to combine basic
computing services, such as number crunching and data storage, to
build highly adaptable computer systems. Examples of IaaS are
Amazon Elastic Compute Cloud (Amazon EC2) and Windows Azure.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+ Summary

 Organization and architecture

 Structure and function

 Brief history of computers

 The First Generation: Vacuum
tubes

 The Second Generation:
Transistors

 The Third Generation: Integrated
Circuits

 Later generations

 The evolution of the Intel x86
architecture

 Cloud computing

 Basic concepts

 Cloud services

 Embedded systems

 The Internet of things

 Embedded operating systems

 Application processors versus
dedicated processors

 Microprocessors versus
microcontrollers

 Embedded versus deeply
embedded systems

 ARM architecture

 ARM evolution

 Instruction set architecture

 ARM products

Chapter 1

Basic Concepts and

Computer Evolution

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+

William Stallings

Computer Organization

and Architecture

10th Edition

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

+ Chapter 3

A Top-Level View of Computer

Function and Interconnection

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
Top-Level of Computer

 At a top level, a computer consists of CPU (central processing unit),

memory, and I/O components, with one or more modules of each

type. These components are interconnected in some fashion to

achieve the basic function of the computer, which is to execute

programs. Thus, at a top level, we can characterize a computer system

by describing (1) the external behavior of each component, that is, the

data and control signals that it exchanges with other components and

(2) the interconnection structure and the controls required to manage

the use of the interconnection structure.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
Computer Components

 Contemporary computer designs are based on concepts

developed by John von Neumann at the Institute for

Advanced Studies, Princeton

 Referred to as the von Neumann architecture and is based on

three key concepts:

 Data and instructions are stored in a single read-write memory

 The contents of this memory are addressable by location, without

regard to the type of data contained there

 Execution occurs in a sequential fashion (unless explicitly

modified) from one instruction to the next

 Hardwired program

 The result of the process of connecting the various components

in the desired configuration

 © 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+

Hardware

and Software

Approaches

Sequence of

arithmetic

and logic

functions

Data Results

(a) Programming in hardware

Instruction

codes

General-purpose

arithmetic

and logic

functions

Data

Control

signals

Results

(b) Programming in software

Figure 3.1 Hardware and Software Approaches

Instruction

interpreter

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Suppose we construct a general-purpose configuration of arithmetic and logic
functions. This set of hardware will perform various functions on data depending on
control signals applied to the hardware. In the original case of customized hardware,
the system accepts data and produces results (Figure 3.1a). With general-purpose
hardware, the system accepts data and control signals and produces results. Thus,
instead of rewiring the hardware for each new program, the programmer merely needs
to supply a new set of control signals.

+

I/O

Components

Software

• A sequence of codes or instructions

• Part of the hardware interprets each instruction and
generates control signals

• Provide a new sequence of codes for each new
program instead of rewiring the hardware

Major components:

• CPU

• Instruction interpreter

• Module of general-purpose arithmetic and logic
functions

• I/O Components

• Input module

• Contains basic components for accepting data
and instructions and converting them into an
internal form of signals usable by the system

• Output module

• Means of reporting results

Software

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+

MEMORY
Memory
address
register (MAR)

• Specifies the
address in memory
for the next read or
write

Memory buffer
register (MBR)

• Contains the data
to be written into
memory or
receives the data
read from memory

I/O address
register (I/OAR)

• Specifies a
particular I/O
device

I/O buffer
register (I/OBR)

• Used for the
exchange of data
between an I/O
module and the
CPU

MAR

MBR

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

PC MAR

IR MBR

I/O AR

I/O BR

CPU Main Memory

System
Bus

I/O Module

Buffers

Instruction

0
1
2

n – 2
n – 1

Data

Data

Data

Data

Instruction

Instruction

Figure 3.2 Computer Components: Top-Level View

PC = Program counter
IR = Instruction register
MAR = Memory address register
MBR = Memory buffer register
I/O AR = Input/output address register
I/O BR = Input/output buffer register

Execution
unit

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

START HALT
Fetch Next
Instruction

Fetch Cycle Execute Cycle

Execute
Instruction

Figure 3.3 Basic Instruction Cycle

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
Fetch Cycle

 At the beginning of each instruction cycle the processor

fetches an instruction from memory

 The program counter (PC) holds the address of the

instruction to be fetched next

 The processor increments the PC after each instruction

fetch so that it will fetch the next instruction in sequence

 The fetched instruction is loaded into the instruction

register (IR)

 The processor interprets the instruction and performs the

required action

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Action Categories

• The processor may
perform some
arithmetic or logic
operation on data

• An instruction may
specify that the
sequence of
execution be altered

• Data transferred to or
from a peripheral
device by
transferring between
the processor and an
I/O module

• Data transferred from
processor to memory
or from memory to
processor

Processor-
memory

Processor-
I/O

Data
processing

Control

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

0 3 4 15
Opcode Address

(a) Instruction format

0 1 15

S Magnitude

(b) Integer format

Program Counter (PC) = Address of instruction
Instruction Register (IR) = Instruction being executed
Accumulator (AC) = Temporary storage

(c) Internal CPU registers

0001 = Load AC from Memory
0010 = Store AC to Memory
0101 = Add to AC from Memory

(d) Partial list of opcodes

Figure 3.4 Characteristics of a Hypothetical Machine

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Instruction
address

calculation

Instruction
operation
decoding

Operand
address

calculation

Data
Operation

Operand
address

calculation

Instruction
fetch

Instruction complete,
fetch next instruction

Multiple
operands

Return for string
or vector data

Figure 3.6 Instruction Cycle State Diagram

Operand
fetch

Operand
store

Multiple
results

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
 Interrupt
 The interrupt is a signal emitted by hardware or software when a

process or an event needs immediate attention. It alerts the processor to
a high-priority process requiring interruption of the current working
process. In I/O devices one of the bus control lines is dedicated for this
purpose and is called the Interrupt Service Routine (ISR).

 When a device raises an interrupt at let’s say process i, the processor
first completes the execution of instruction i. Then it loads the Program
Counter (PC) with the address of the first instruction of the ISR. Before
loading the Program Counter with the address, the address of the
interrupted instruction is moved to a temporary location. Therefore,
after handling the interrupt the processor can continue with process
i+1.

 While the processor is handling the interrupts, it must inform the device
that its request has been recognized so that it stops sending the
interrupt request signal. Also, saving the registers so that the
interrupted process can be restored in the future, increases the delay
between the time an interrupt is received and the start of the execution
of the ISR. This is called Interrupt Latency.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
Type of interrupt

 Software Interrupts: A sort of interrupt called a software interrupt is one

that is produced by software or a system as opposed to hardware. Traps and

exceptions are other names for software interruptions. They serve as a signal

for the operating system or a system service to carry out a certain function

or respond to an error condition. A particular instruction known as a

“interrupt instruction” is used to create software interrupts. When the

interrupt instruction is used, the processor stops what it is doing and

switches over to a particular interrupt handler code. The interrupt handler

routine completes the required work or handles any errors before handing

back control to the interrupted application.

 Hardware Interrupts: In a hardware interrupt, all the devices are connected

to the Interrupt Request Line. A single request line is used for all the n

devices. To request an interrupt, a device closes its associated switch. When

a device requests an interrupt, the value of INTR is the logical OR of the

requests from individual devices.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Program Generated by some condition that occurs as a result of an instruction
execution, such as arithmetic overflow, division by zero, attempt to
execute an illegal machine instruction, or reference outside a user's
allowed memory space.

Timer Generated by a timer within the processor. This allows the operating
system to perform certain functions on a regular basis.

I /O Generated by an I/O controller, to signal normal completion of an
operation, request service from the processor, or to signal a variety of
error conditions.

Hardware failure Generated by a failure such as power failure or memory parity error.

Table 3.1

Classes of Interrupts

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

User
Program

WRITE

WRITE

WRITE

I/O
Program

I/O
Command

END

1

2

3

2

3

4

5

(a) No interrupts

= interrupt occurs during course of execution of user program

User
Program

WRITE

WRITE

WRITE

I/O
Program

I/O
Command

Interrupt
Handler

END

1

2a

2b

3a

3b

4

5

(b) Interrupts; short I/O wait

User
Program

WRITE

WRITE

WRITE

I/O
Program

I/O
Command

Interrupt
Handler

END

1 4

5

(c) Interrupts; long I/O wait

Figure 3.7 Program Flow of Control Without and With Interrupts

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

1

2

i

i + 1

M

Interrupt
occurs here

User Program Interrupt Handler

Figure 3.8 Transfer of Control via Interrupts

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

START

HALT

Fetch Next
Instruction

Fetch Cycle Execute Cycle Interrupt Cycle

Interrupts
Disabled

Interrupts
Enabled

Execute
Instruction

Check for
Interrupt;

Process Interrupt

Figure 3.9 Instruction Cycle with Interrupts

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

4

1

5 5

2

5

3

4

Time

I/O operation;
processor waits

I/O operation
concurrent with
processor executing

I/O operation
concurrent with
processor executing

I/O operation;
processor waits

4

2a

1

2b

4

3a

5

3b

(a) Without interrupts

(b) With interrupts

Figure 3.10 Program Timing: Short I/O Wait

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

4

1

5

2

5

3

4

Time

4

2

1

5

4

(a) Without interrupts

(b) With interrupts

Figure 3.11 Program Timing: Long I/O Wait

3

5

I/O operation;
processor waits

I/O operation;
processor waits

I/O operation
concurrent with
processor executing;
then processor
waits

I/O operation
concurrent with
processor executing;
then processor
waits

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Instruction
address
calculation

Instruction
operation
decoding

Operand
address
calculation

Data
Operation

Operand
address
calculation

Instruction
fetch

Instruction complete,
fetch next instruction

Multiple
operands

Return for string
or vector data

Figure 3.12 Instruction Cycle State Diagram, With Interrupts

No
interrupt

Operand
fetch

Operand
store

Interrupt
check

Interrupt

Multiple
results

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
Multiple Interrupts

 Disable interrupt

 processor will ignore further interrupts whilst processing one
interrupt

 Interrupts remain pending and are checked after first interrupt has
been processed

 Interrupts handled in sequence as they occur

 Define priorities

 Low priority interrupts can be interrupted by higher priority interrupts

 When higher priority interrupt has been processed processor returns
to previous interrupt

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

User program
Interrupt
handler X

Interrupt
handler Y

(a) Sequential interrupt processing

(b) Nested interrupt processing

Figure 3.13 Transfer of Control with Multiple Interrupts

User program
Interrupt
handler X

Interrupt
handler Y

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

User program
Printer

interrupt service routine
Communication

interrupt service routine

Disk
interrupt service routine

Figure 3.14 Example Time Sequence of Multiple Interrupts

t =
 10

t = 40

t = 15

t = 25

t = 25

t = 35

t = 0

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

20

+
I/O Function

 I/O module can exchange data directly with the processor

 Processor can read data from or write data to an I/O module

 Processor identifies a specific device that is controlled by a

particular I/O module

 I/O instructions rather than memory referencing instructions

 In some cases it is desirable to allow I/O exchanges to occur

directly with memory

 The processor grants to an I/O module the authority to read from

or write to memory so that the I/O memory transfer can occur

without tying up the processor

 The I/O module issues read or write commands to memory

relieving the processor of responsibility for the exchange

 This operation is known as direct memory access (DMA)

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Memory

N Words
0

N – 1

Data

Data

Address

Write

Read

I/O Module

M Ports

External
Data

Address

Internal
Data

External
Data

Interrupt
Signals

Internal
DataWrite

Read

CPU

Figure 3.15 Computer Modules

Data

Data

AddressInstructions

Control
Signals

Interrupt
Signals

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

The interconnection structure must support the

following types of transfers:

Memory
to

processor

Processor
reads an

instruction
or a unit of
data from
memory

Processor
to

memory

Processor
writes a

unit of data
to memory

I/O to
processor

Processor
reads data

from an I/O
device via

an I/O
module

Processor
to I/O

Processor
sends data
to the I/O

device

I/O to or
from

memory

An I/O
module is
allowed to
exchange

data
directly

with
memory
without
going

through the
processor

using direct
memory
access

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

B

u

s

I

n

t

e

r

c

o

n

n

e

c

t

i

o

n

A communication pathway
connecting two or more
devices

• Key characteristic is that it is a
shared transmission medium

Signals transmitted by any
one device are available for
reception by all other
devices attached to the bus

• If two devices transmit during the
same time period their signals will
overlap and become garbled

Typically consists of multiple
communication lines

• Each line is capable of
transmitting signals representing
binary 1 and binary 0

Computer systems contain a
number of different buses

that provide pathways
between components at

various levels of the
computer system hierarchy

System bus

• A bus that connects major
computer components (processor,
memory, I/O)

The most common computer
interconnection structures

are based on the use of one
or more system buses

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Data Bus

 Data lines that provide a path for moving data among system

modules

 May consist of 32, 64, 128, or more separate lines

 The number of lines is referred to as the width of the data bus

 The number of lines determines how many bits can be

transferred at a time

 The width of the data bus

 is a key factor in

 determining overall

 system performance

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+ Address Bus Control Bus

 Used to designate the source or
destination of the data on the
data bus

 If the processor wishes to
read a word of data from
memory it puts the address of
the desired word on the
address lines

 Width determines the maximum
possible memory capacity of the
system

 Also used to address I/O ports

 The higher order bits are
used to select a particular
module on the bus and the
lower order bits select a
memory location or I/O port
within the module

 Used to control the access and
the use of the data and address
lines

 Because the data and address
lines are shared by all
components there must be a
means of controlling their use

 Control signals transmit both
command and timing
information among system
modules

 Timing signals indicate the
validity of data and address
information

 Command signals specify
operations to be performed

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

CPU Memory Memory I/O

Figure 3.16 Bus Interconnection Scheme

Bus

I/O

Control lines

Address lines

Data lines

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
Point-to-Point Interconnect

Principal reason for change
was the electrical

constraints encountered
with increasing the
frequency of wide
synchronous buses

At higher and higher data
rates it becomes

increasingly difficult to
perform the synchronization
and arbitration functions in a

timely fashion

A conventional shared bus
on the same chip magnified
the difficulties of increasing
bus data rate and reducing
bus latency to keep up with

the processors

Has lower latency, higher
data rate, and better

scalability

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+ Quick Path Interconnect

 Introduced in 2008

 Multiple direct connections

 Direct pairwise connections to other components

eliminating the need for arbitration found in shared

transmission systems

 Layered protocol architecture

 These processor level interconnects use a layered

protocol architecture rather than the simple use of

control signals found in shared bus arrangements

 Packetized data transfer

 Data are sent as a sequence of packets each of which

includes control headers and error control codes

QPI

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Figure 3 .1 7 Mult icore Configurat io n Using QPI

Core
A

I/O Hub

I/O Hub

Core
B

Core
C

Core
D

D
R

A
M

I/
O

 d
ev

ic
e

I/
O

 d
ev

ic
e

D
R

A
M

D
R

A
M

D
R

A
M

I/
O

 d
ev

ic
e

I/
O

 d
ev

ic
e

QPI PCI Express Memory bus

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Figure 3 .1 8 QPI Layers

Link

Physical

Protocol
Packets

Flits

Phits

Routing

Link

Physical

Protocol

Routing

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Transmission Lanes

Intel QuickPath Interconnect Port

COMPONENT A

COMPONENT B

F
w

d
C

lk

Reception Lanes

R
cv

 C
lk

Reception Lanes

R
cv

 C
lk

Transmission Lanes

F
w

d
C

lk

Figure 3 .1 9 Physical I nterface of the I ntel QPI I nterconnect

Intel QuickPath Interconnect Port

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

#2n+1 #2n #n+2 #n+1 #n #2 #1

bit stream of flits

#2n+1 #n+1 #1 QPI
lane 0

#2n+2 #n+2 #2 QPI
lane 1

#3n #2n #n QPI
lane 19

Figure 3.20 QPI Multilane Distribution

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
QPI Link Layer

 Error control function

 Detects and recovers from

bit errors, and so isolates

higher layers from

experiencing bit errors

 Performs two key

functions: flow control and

error control

 Operate on the level of

the flit (flow control

unit)

 Each flit consists of a 72-

bit message payload

and an 8-bit error

control code called a

cyclic redundancy check

(CRC)

 Flow control function

 Needed to ensure that a
sending QPI entity does not
overwhelm a receiving QPI
entity by sending data faster
than the receiver can process
the data and clear buffers for
more incoming data

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
QPI Routing and Protocol Layers

 Used to determine the course

that a packet will traverse

across the available system

interconnects

 Defined by firmware and

describe the possible paths

that a packet can follow

 Packet is defined as the unit of

transfer

 One key function performed at

this level is a cache coherency

protocol which deals with

making sure that main

memory values held in

multiple caches are consistent

 A typical data packet payload

is a block of data being sent to

or from a cache

Routing Layer Protocol Layer

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
Peripheral Component

Interconnect (PCI)

 A popular high bandwidth, processor independent bus that can
function as a mezzanine or peripheral bus

 Delivers better system performance for high speed I/O
subsystems

 PCI Special Interest Group (SIG)

 Created to develop further and maintain the compatibility of the PCI
specifications

 PCI Express (PCIe)

 Point-to-point interconnect scheme intended to replace bus-based
schemes such as PCI

 Key requirement is high capacity to support the needs of higher data rate
I/O devices, such as Gigabit Ethernet

 Another requirement deals with the need to support time dependent data
streams

 © 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Figure 3 .2 1 Typical Configurat ion Using PCI e

Chipset

Core Core

Gigabit
Ethernet

PCIe

PCIe

PCIe PCIe

PCIePCIe

PCIe

PCIe–PCI
Bridge

Memory

Memory

Legacy
endpoint

PCIe
endpoint

PCIe
endpoint

PCIe
endpoint

Switch

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Figure 3 .2 2 PCI e Protocol Layers

Data Link

Physical

Transaction layer
packets (TLP)

Data link layer
packets (DLLP)

Transaction

Data Link

Physical

Transaction

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

B1B2B3B4B5B6B7 B0

byte stream

PCIe
lane 0

Figure 3.23 PCIe Multilane Distribution

B4 B0

B5 B1

B6 B2

B7 B3

128b/
130b

PCIe
lane 1

128b/
130b

PCIe
lane 2

128b/
130b

PCIe
lane 3

128b/
130b

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Figure 3.24 PCIe Transmit and Receive Block Diagrams

Scrambler
Differential

Receiver

Data recovery
circuit

Clock recovery
circuit

D+

8b

130b

128b

130b1b

1b

1b

D–

128b/130b Encoding

Parallel to serial

(a) Transmitter

Serial to parallel

Transmitter Differential
Driver

128b/130b Decoding

Descrambler

(b) Receiver

8b

8b

D+ D–

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+

PCIe

Transaction Layer (TL)

 Receives read and write requests from

the software above the TL and creates

request packets for transmission to a

destination via the link layer

 Most transactions use a split transaction

technique

 A request packet is sent out by a

source PCIe device which then waits

for a response called a completion

packet

  TL messages and some write

transactions are posted transactions

(meaning that no response is

expected)

 TL packet format supports 32-bit

memory addressing and extended

64-bit memory addressing

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
The TL supports four address

spaces:

 Memory

 The memory space includes
system main memory and
PCIe I/O devices

 Certain ranges of memory
addresses map into I/O
devices

 Configuration

 This address space enables

the TL to read/write

configuration registers

associated with I/O devices

 I/O

 This address space is used

for legacy PCI devices, with

reserved address ranges

used to address legacy I/O

devices

 Message

 This address space is for

control signals related to

interrupts, error handling,

and power management

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Table 3.2

PCIe TLP Transaction Types
Address Space TLP Type Purpose

Memory Read Request

Memory Read Lock Request Memory

Memory Write Request

Transfer data to or from a location in the
system memory map.

I/O Read Request
I /O

I/O Write Request
Transfer data to or from a location in the
system memory map for legacy devices.

Config Type 0 Read Request

Config Type 0 Write Request

Config Type 1 Read Request
Configuration

Config Type 1 Write Request

Transfer data to or from a location in the
configuration space of a PCIe device.

Message Request
Message

Message Request with Data
Provides in-band messaging and event
reporting.

Completion

Completion with Data

Completion Locked

Memory, I /O,
Configuration

Completion Locked with Data

Returned for certain requests.

 © 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Figure 3 .2 5 PCI e Protocol Data Unit Form at

STP framing

Sequence number

ECRC

LCRC

(a) Transaction Layer Packet (b) Data Link Layer Packet

STP framing

A
pp

e n
de

d
by

 P
h y

si
ca

l L
ay

er

A
pp

en
de

d
by

 D
at

a
L

in
k

L
ay

er

C
re

at
ed

 b
y

T
ra

ns
ac

ti
on

 L
ay

er

C
re

at
ed

by
 D

L
L

1

2

12 or 16

0 to 4096

0 or 4

4

1

Number
of octets

Data

Header

Start

DLLP

End

1

4

1

CRC2

A
pp

en
de

d
by

 P
L

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+ Summary

 Computer components

 Computer function

 Instruction fetch and

execute

 Interrupts

 I/O function

 Interconnection structures

 Bus interconnection

 Point-to-point interconnect

 QPI physical layer

 QPI link layer

 QPI routing layer

 QPI protocol layer

 PCI express

 PCI physical and logical

architecture

 PCIe physical layer

 PCIe transaction layer

 PCIe data link layer

Chapter 3

A Top-Level View of

Computer Function

and Interconnection

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+

William Stallings

Computer Organization

and Architecture

10th Edition

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

+ Chapter 4
Cache Memory

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Table 4.1

Key Characteristics of Computer Memory Systems

Location
 Internal (e.g. processor registers, cache,

main memory)
 External (e.g. optical disks, magnetic disks,

tapes)
Capacity
 Number of words
 Number of bytes
Unit of Transfer
 Word
 Block
Access Method
 Sequential
 Direct
 Random
 Associative

Performance
 Access time
 Cycle time
 Transfer rate
Physical Type
 Semiconductor
 Magnetic
 Optical
 Magneto-optical
Physical Characteristics
 Volatile/nonvolatile
 Erasable/nonerasable
Organization
 Memory modules

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
Characteristics of Memory

Systems

 Location

 Refers to whether memory is internal and external to the computer

 Internal memory is often equated with main memory

 Processor requires its own local memory, in the form of registers

 Cache is another form of internal memory

 External memory consists of peripheral storage devices that are
accessible to the processor via I/O controllers

 Capacity

 Memory is typically expressed in terms of bytes

 Unit of transfer

 For internal memory the unit of transfer is equal to the number of
electrical lines into and out of the memory module

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
Method of Accessing Units of Data

Sequential Access:

 Whenever any access request arrives, the memory is

searched from the beginning till the required data is found

 Search begins at the first memory location and proceeds

sequentially moving ahead one step at a time till the desired

location is reached

 Time taken to access any location is the variable.

 Simple but slow technique

 Tapes is an example of sequential access.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
Method of Accessing Units of Data

 Random Access:

 Data represent at any memory location can be accessed directly

 Time taken to access any location is the same.

 Faster way to retrieve data.

 RAM is an example of this kind of access.

 Direct Access:

 it’s semi-random mode of operation in which data is stored in blocks
/tracks which can be accessed randomly.

 Unlike random access the time taken to access any location may not be
the same

 Used by magnetic disk

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
Method of Accessing Units of Data

Associative:

 When data is accessed by data content rather than data
address, then the memory is referred to as associative
memory or content addressable memory (CAM).

 Data is stored at the very first empty location found in
memory.

 In associative memory when data is stored at a particular
location then no address is stored along with it.

 When the stored data need to be searched then only the
key(i.e. data or part of data) is provided.

 A sequential search is performed in the memory using the
specified key to find out the matching key from the memory.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
Block Diagram of Associative

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

 Argument Register (A): It
contains the word to be
searched.

 Key register (K): This specifies
which part of the argument
word needs to be compared
with words in memory. If all
bits in register are 1, the entire
word should be compared
else only the bits having 1 will
be compared.

 Associative memory array: it
contains the words which are
to be compared with the
argument word

 Match register (M): After the

matching process the bits

corresponding to matching

words in match register are

set to 1

+
Associative example

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

0

0

1

0

Method of Accessing Units of Data

Sequential
access

Memory is organized into
units of data called

records

Access must be made in
a specific linear

sequence

Access time is variable

Direct
access

Involves a shared read-
write mechanism

Individual blocks or
records have a unique

address based on
physical location

Access time is variable

Random
access

Each addressable
location in memory has a
unique, physically wired-
in addressing mechanism

The time to access a
given location is

independent of the
sequence of prior

accesses and is constant

Any location can be
selected at random and
directly addressed and

accessed

Main memory and some
cache systems are

random access

Associative

A word is retrieved
based on a portion of its
contents rather than its

address

Each location has its own
addressing mechanism

and retrieval time is
constant independent of
location or prior access

patterns

Cache memories may
employ associative

access

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Capacity and Performance:

The two most important characteristics of
memory

Three performance parameters are used:

Access time (latency)

•For random-access memory it is the
time it takes to perform a read or
write operation

•For non-random-access memory it
is the time it takes to position the
read-write mechanism at the
desired location

Memory cycle time

•Access time plus any additional
time required before second
access can commence

•Additional time may be required
for transients to die out on signal
lines or to regenerate data if they
are read destructively

•Concerned with the system bus,
not the processor

Transfer rate

•The rate at which data can be
transferred into or out of a memory
unit

•For random-access memory it is
equal to 1/(cycle time)

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+ Memory
 The most common forms are:

 Semiconductor memory

 Magnetic surface memory

 Optical

 Magneto-optical

 Several physical characteristics of data storage are important:

 Volatile memory

 Information decays naturally or is lost when electrical power is switched off

 Nonvolatile memory

 Once recorded, information remains without deterioration until deliberately changed

 No electrical power is needed to retain information

 Magnetic-surface memories

 Are nonvolatile

 Semiconductor memory

 May be either volatile or nonvolatile

 Nonerasable memory

 Cannot be altered, except by destroying the storage unit

 Semiconductor memory of this type is known as read-only memory (ROM)

 For random-access memory the organization is a key design issue

 Organization refers to the physical arrangement of bits to form words

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
Semiconductor memory

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
Memory Hierarchy

 Design constraints on a computer’s memory can be summed
up by three questions:

 How much, how fast, how expensive

 There is a trade-off among capacity, access time, and cost

 Faster access time, greater cost per bit

 Greater capacity, smaller cost per bit

 Greater capacity, slower access time

 The way out of the memory dilemma is not to rely on a single

memory component or technology, but to employ a memory

hierarchy

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Figure 4.1 The Memory Hierarchy

Inboardmemory

Outboardstorage

Off-linestorage

Main

memory

Magnetic disk

CD-ROM

CD-RW

DVD-RW

DVD-RAM

Blu-Ray

Magnetic tape

Cache

Reg-

iste
rs

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
Memory

 The use of three levels exploits the fact that semiconductor
memory comes in a variety of types which differ in speed
and cost

 Data are stored more permanently on external mass storage
devices

 External, nonvolatile memory is also referred to as
secondary memory or auxiliary memory

 Disk cache

 A portion of main memory can be used as a buffer to hold data
temporarily that is to be read out to disk

 A few large transfers of data can be used instead of many small
transfers of data

 Data can be retrieved rapidly from the software cache rather than
slowly from the disk

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

CPU

Word Transfer

Fast

Fastest Fast
Less
fast

Slow

Slow

Block Transfer

Cache Main Memory

Figure 4.3 Cache and Main Memory

(a) Single cache

(b) Three-level cache organization

CPU Level 1
(L1) cache

Level 2
(L2) cache

Level 3
(L3) cache

Main
Memory

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+

 In Figure 4.3a.The cache contains a
copy of portions of main memory.
When the processor attempts to read
a word of memory, a check is made
to determine if the word is in the
cache. If so, the word is delivered to
the processor. If not, a block of main
memory, consisting of some fixed
number of words, is read into the
cache and then the word is delivered
to the processor. Because of the
phenomenon of locality of reference,
when a block of data is fetched into
the cache to satisfy a single memory
reference, it is likely that there will
be future references to that same
memory location or to other words in
the block

 Figure 4.3b depicts the use of
multiple levels of cache. The L2
cache is slower and typically larger
than the L1 cache, and the L3
cache is slower and typically larger
than the L2 cache.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Memory
address

0
1
2

0
1
2

C – 1

3

2n – 1
Word

Length

Block Length
(K Words)

Block 0
(K words)

Block M – 1

Line
Number Tag Block

(b) Main memory

(a) Cache

Figure 4.4 Cache/Main-Memory Structure

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Receive address
RA from CPU

Is block
containing RA
in cache?

Fetch RA word
and deliver
to CPU

DONE

Access main
memory for block
containing RA

Allocate cache
line for main
memory block

Deliver RA word
to CPU

Load main
memory block
into cache line

Figure 4.5 Cache Read Operation

START

No

Yes

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Processor Cache

Address

Address
buffer

Data
buffer

Control

Data

Figure 4.6 Typical Cache Organization

Control

Sy
st

em
 B

us

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
Cache organization

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

 In figure 4.6, the cache connects to the processor via data, control, and
address lines. The data and address lines also attach to data and address
buffers, which attach to a system bus from which main memory is reached.

 When a cache hit occurs, the data and address buffers are disabled and
communication is only between processor and cache, with no system bus
traffic.

 When a cache miss occurs, the desired address is loaded onto the system bus
and the data are returned through the data buffer to both the cache and the
processor.

 In other organizations, the cache is physically interposed between the
processor and the main memory for all data, address, and control lines. In this
latter case, for a cache miss, the desired word is first read into the cache and
then transferred from cache to processor.

Table 4.2

Elements of Cache Design

Cache Addresses
 Logical
 Physical
Cache Size
Mapping Function
 Direct
 Associative
 Set Associative
Replacement Algorithm
 Least recently used (LRU)
 First in first out (FIFO)
 Least frequently used (LFU)
 Random

Write Policy
 Write through
 Write back
Line Size
Number of caches
 Single or two level
 Unified or split

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
Cache Addresses

 Virtual memory

 Facility that allows programs to address memory from a logical

point of view, without regard to the amount of main memory

physically available

 When used, the address fields of machine instructions contain

virtual addresses

 For reads to and writes from main memory, a hardware memory

management unit (MMU) translates each virtual address into a

physical address in main memory

Virtual Memory

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Processor Main
memoryCache

Logical address Physical address

Data

MMU

(a) Logical Cache

Processor Main
memoryCache

Logical address Physical address

Data

MMU

(b) Physical Cache

Figure 4.7 Logical and Physical Caches

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
Logical and physical caches

 When virtual addresses are used, the system designer may choose to place
the cache between the processor and the MMU or between the MMU and
main memory (Figure 4.7).

 A logical cache, also known as a virtual cache, stores data using virtual
addresses. The processor accesses the cache directly, without going
through the MMU.

 A physical cache stores data using main memory physical addresses.

 One obvious advantage of the logical cache is that cache access speed is
faster than for a physical cache, because the cache can respond before the
MMU performs an address translation.

 While the disadvantage is, each application sees a virtual memory that
starts at address 0. Thus, the same virtual address in two different
applications refers to two different physical addresses, The cache memory
must therefore be completely flushed with each application context switch

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
Cache size

 Small enough so that the overall average cost per bit is
close to that of main memory alone and

 Large enough so that the overall average access time is
close to that of the cache alone

 The larger the cache, the larger the number of gates
involved in addressing the cache. The result is that large
caches tend to be slightly slower than small ones – even
when built with the same integrated circuit technology and
put in the same place on chip and circuit board

 The available chip and board area also limits cache size

 Because the performance of the cache is very sensitive to
the nature of the workload, it is impossible to arrive at a
single ‘optimum’ cache size

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Mapping Function

 Because there are fewer cache lines than main memory
blocks, an algorithm is needed for mapping main memory
blocks into cache lines

 Three techniques can be used:

1. Direct mapping :

 The simplest technique, known as direct mapping, maps each block
of main memory into only one possible cache line.

 The mapping is expressed as

 i= j Mod m

Where : i = cache line number

 j = main memory block number

 m = number of lines in the cache

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Figure 4.8 Mapping from Main Memory to Cache: Direct

Figure 4.8a shows the mapping for the first m blocks of main memory. Each block
of main memory maps into one unique line of the cache. The next m blocks of
main memory map into the cache in the same fashion; that is, block Bm of main
memory maps into line L0 of cache, block Bm+1 maps into line L1, and so on.

+
Example

 If Cache size = 64 Kbytes and block size=4 bytes and

memory size =16 Mbyte? Find total number of blocks in main

memory and total cache lines within cache memory.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
Direct Mapping

 Each block of main memory maps to only one cache line

 Address is two parts

 W: least significant bits identify unique word

 S: Most significant bits identify one memory block

 S-bits are split into

 s-r: Tag bits

 r:cache line

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
Direct Mapping Summary

 Address length = (s + w) bits

 Number of addressable units = 2s+w words or bytes

 Block size = line size = 2w words or bytes

 Number of blocks in main memory = 2s+ w/2w = 2s

 Number of lines in cache = m = 2r

 Size of tag = (s – r) bits

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

WordLineTag
WO
W1
W2
W3

Compare

1 if match
0 if no match

0 if match
1 if no match

W4j
W(4j+1)
W(4j+2)
W(4j+3)

Tag Data

Cache

L0

Li

Memory Address

(miss in cache)

(hit in cache)

w

s–r

wr

s+w

Main Memory

Bj

B0

s

w

Figure 4.9 Direct-Mapping Cache Organization

Lm–1

s–r

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Figure 4.9 illustrates the general mechanism .
For purposes of cache access, each main memory address can
be viewed as consisting of three fields.
 The least significant w bits identify a unique word or byte
within a block of main memory; in most contemporary
machines, the address is at the byte level .
The remaining s bits specify one of the 2𝑠 blocks of main
memory.
 The cache logic interprets these s bits as a tag of s - r bits
(most significant portion) and a line field of r bits .
This latter field identifies one of the m = 2𝑟 lines of the cache

+
Advantage and disadvantage

Direct mapping

 The direct mapping technique is simple and inexpensive to
implement. Its

 main disadvantage is that there is a fixed cache location for any
given block. Thus, if a program happens to reference words
repeatedly from two different blocks that map into the same line, then
the blocks will be continually swapped in the cache, and the hit ratio
will be low (a phenomenon known as thrashing).

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
Fully associative mapping

 Originally proposed as an approach to reduce the conflict

misses of direct mapped caches without affecting its fast

access time

 Also called victim cache

 Typical size is 4 to 16 cache lines

 Residing between direct mapped L1 cache and the next level

of memory

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
Associative mapping

 Overcome the disadvantage of direct mapping by

permitting each main memory block to be loaded into

any line of the cache

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
Associative mapping

 The cache control logic interprets a memory address simply

as a Tag and A word field.

 The Tag field uniquely identifies a block of main memory

 To determine whether a block is in the cache, the cache

control logic must simultaneously examine every line’s tag
for a match

 Word is used for specific access within block

 2 bit word  1 out of 4 words

 4 bit word  1 out of 16 words

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Tag Word

W0
W1
W2
W3

L0

Compare

W4j
W(4j+1)
W(4j+2)
W(4j+3)

Tag Data

Cache
Memory Address

(miss in cache)

(hit in cache)

w

w

s

s+w

Main Memory

B0

Bj

s

w

Figure 4.11 Fully Associative Cache Organization

Lm–1

Lj

s

1 if match
0 if no match

0 if match
1 if no match

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
Associative Mapping Summary

 Address length = (s + w) bits

 Number of addressable units = 2s+w words or bytes

 Block size = line size = 2w words or bytes

 Number of blocks in main memory = 2s+ w/2w = 2s

 Number of lines in cache = undetermined

 Size of tag = s bits

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
Example

 Using mapping If Cache size = 64 Kbytes and block size=4

bytes and memory size =16 Mbyte? Find total number of

blocks in main memory, and the content of memory address

 Sol



© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
Associative Mapping Pros & Cons

 With associative mapping there is flexibility as to which

block to replace when a new block is read into the cache.

 Note: Replacement algorithms are designed to maximize the

hit ratio.

 Complex circuitry required to examine the tags of all cache

lines in parallel

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
Set Associative Mapping

 Compromise that exhibits the strengths of both the direct and

associative approaches while reducing their disadvantages

 The cache consists of several sets, each of which consists of

several lines

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
Set Associative Mapping

 Each word maps

into all the cache

lines in a specific

set

 Set-associative

cache can be

Physically

implemented as

associative

caches

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
Set Associative Mapping

 Cache size : 64 Kbytes.

 Block size: 4 bytes

 Cache is organized as 16 𝐾 = 214 lines of 4 bytes each.

 Memory Size: 16 Mbytes, with each byte directly addressable

by a 24-bit address (224 = 16 𝑀).

 Main memory: (222 =4M)blocks of 4 bytes each

 each set contain 2 line then

 # of set(v)= 214 / 21 =213 = 8 K

 Size of tag= (s-d)  22-13 = 9 tag set word

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

9 13 2

+
Set Associative Mapping

 Memory address as three fields: Tag, Set, and Word.

 The d set bits specify one of 𝑣 = 𝟐𝒅 sets

 The 𝒔 bits of the Tag and Set fields specify one of the 𝟐𝒔

blocks of main memory.

 Number of sets(v) can be calculate by dividing cache

size into k(number of line in each set)

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

WordSetTag

Compare

Tag Data

Cache

F0

Memory Address

(hit in cache)

s–d

wds–d

s+w

Main Memory

s+w

Figure 4.14 k-Way Set Associative Cache Organization

F1

Fk–1

Fk

Fk+i

F2k–1

Set 0

Set 1

B1

B0

Bj

1 if match
0 if no match

0 if match
1 if no match (miss in cache)

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Figure 4.14 illustrates the cache control logic.
With fully associative mapping, the tag in a
memory address is quite large and must be
compared to the tag of every line in the cache.
With k-way set-associative mapping, the tag in a
memory address is much smaller and is only
compared to the k tags within a single set

+
Set Associative Mapping Summary

 Address length = (s + w) bits

 Number of addressable units = 2s+w words or bytes

 Block size = line size = 2w words or bytes

 Number of blocks in main memory = 2s+w/2w=2s

 Number of lines in set = k

 Number of sets = v = 2d

 Number of lines in cache = m=kv = k * 2d

 Size of cache = k * 2d+w words or bytes

 Size of tag = (s – d) bits

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
Set Associative Mapping

 In the extreme case of 𝑣 = 𝑚, 𝑘 = 1, the set-associative

technique reduces to direct mapping

 for 𝑣 = 1, 𝑘 = 𝑚, it reduces to associative mapping.

 The use of two lines per set (𝑣 = m/2, k = 2) is the most

common set-associative organization

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
Replacement Algorithms

 Once the cache has been filled, when a new block is brought

into the cache, one of the existing blocks must be replaced

 For direct mapping there is only one possible line for any

particular block and no choice is possible

 For the associative and set-associative techniques a

replacement algorithm is needed

 To achieve high speed, an algorithm must be implemented in

hardware

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+ The most common replacement

algorithms are:

 Least recently used (LRU)

 Most effective

 Replace that block in the set that has been in the cache longest with
no reference to it

 Because of its simplicity of implementation, LRU is the most popular
replacement algorithm

 First-in-first-out (FIFO)

 Replace that block in the set that has been in the cache longest

 Easily implemented as a round-robin or circular buffer technique

 Least frequently used (LFU)

 Replace that block in the set that has experienced the fewest
references

 Could be implemented by associating a counter with each line

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

When a block that is resident in
the cache is to be replaced

there are two cases to consider:

If the old block in the cache has not been
altered then it may be overwritten with a
new block without first writing out the old

block

If at least one write operation has been
performed on a word in that line of the

cache then main memory must be
updated by writing the line of cache out
to the block of memory before bringing

in the new block

There are two problems to
contend with:

More than one device may have access to
main memory

A more complex problem occurs when
multiple processors are attached to the

same bus and each processor has its own
local cache - if a word is altered in one
cache it could conceivably invalidate a

word in other caches

Write Policy

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
Write Through

 and Write Back

 Write through

 Simplest technique

 All write operations are made to main memory as well as to the cache

 The main disadvantage of this technique is that it generates substantial
memory traffic and may create a bottleneck

 Write back

 Minimizes memory writes

 Updates are made only in the cache

 When an update occurs, a dirty bit, or use bit, associated with the line
is set. Then, when a block is replaced, it is written back to main
memory if and only if the dirty bit is set

 The problem with write back is “cache coherent” different copies for
block between cache and main memory

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+ Summary

 Computer memory

system overview

 Characteristics of

Memory Systems

 Memory Hierarchy

 Cache memory

principles

 Pentium 4 cache

organization

 Elements of cache

design

 Cache addresses

 Cache size

 Mapping function

 Replacement algorithms

 Write policy

 Line size

 Number of caches

Chapter 4

Cache

Memory

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

