
Computer Architecture  1 

 Computer Architectureمعمارية الحاسبة       

Computer Architecture: is the design of computers including their 

instruction sets, hardware components and system organization. 

There are two essential parts of computer architecture: 

1-Instruction Set Architecture (ISA) 

2-Hardware System Architecture (HSA) 

Instruction Set Architecture (ISA): Includes the specifications that 

determine how machine language programmers will interact with 

computer. 

 A computer is generally viewed in terms of its ISA, which 

determines the computational characteristics of the computer. 

Hardware System Architecture (HSA): Deals with the computer’s 

major hardware subsystems, including its central processing unit (CPU), 

its storage system and its input-output system (I/O) (which is the 

computer’s interface to the world). The HSA includes both the logical 

design and the data flow organization of these subsystems, HSA 

determines how efficiently the machine will operate. 

 

A Classification of Computer Architecture: 

1) Von Neumann Machines: 

Von Neumann Machines meet the following criteria: 

 It has three basic hardware subsystems: 

 CPU 

 Main Memory System 

 I/O System 

 It is a stored-program computer. The main memory system holds the 

program that controls the computer’s operation and the computer can 

manipulate its own program more or less as it can any other data in 

memory. 

 It carries out instruction sequentially. The CPU executes or at least 

appears to execute one program at a time. 

 It has or at least appears to have a single path between the main 

memory system and the control unit of the CPU. 
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 Conventional Von Neumann Machines provide one pathway for 

addresses and a second pathway for data & instruction. 

 Harvard Architecture: is a class of VNM similar to conventional 

computers except that they provide independent pathways for data 

addresses, data, instruction addresses and instructions. Harvard 

architectures allow the CPU to access instruction and data 

simultaneously. 

Von Neumann Machines 

 

Conventional VNM                                   Harvard Architecture 
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The main parts of the CPU: 

1-Control Unit: which controls the operation of the computer. 

2-Arithmetic & Logic Unit (ALU): which performs arithmetic, logical 

and shift operations to produce results. 

3-Register Set: which holds various values during the computer’s 

operations. 

4-Program Counter (PC) (Instruction Pointer IP): which holds the 

main memory address of an instruction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2) Non Von Neumann Machines: 

A) Single Instruction stream, Single Data stream (SISD) 

The Von Neumann architecture belong to this classification. SISD 

computers have one CPU that execute one instruction at a time & 

fetch or stores one item of data at a time. 
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B) Single Instruction stream, Multiple Data stream (SIMD) 

SIMD machine have a CU that operates like a VNM (i.e. it executes a 

single instruction stream). But have more than one PE (Processor 

Element). The CU generates the control signals for all of the PEs, 

which execute the same operation on different data items. 

 

 

 

 

 

 

 

 

C) Multiple Instruction stream, Single Data stream (MISD) 

Logically machines in this class would execute several different 

programs on the same data item. There are currently no such 

machines. 

 

D) Multiple Instruction stream, Multiple Data stream (MIMD) 

MIMD machine also called Multiprocessors. They are more than one 

independent processor, and each processor can execute a different 

program on its own data. 

 

 

 

 

 

 

 

 

Memory System Architecture 

The memory of a computer can be divided into three main groups: 

1-Internal processor memory: This represent a small set of high-speed 

registers used as working memory for temporary storage of instructions 

and data. 

2-Main memory (Also called Primary memory): This is a relatively 

large fast memory used for program and data storage during computer 

operation. It is characterized by the fact that locations in main memory 

can be accessed directly and rapidly by the CPU instruction set. 
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3-Secondary memory (Also called Auxiliary or Backing memory): 
This is generally much large in capacity but also much slower than 

main memory. It is used for storing system programs and large data 

files. This type of memory has the following groups: 

a- Magnetic tape  b- Floppy disk 

c- Hard disk   d- CD-Rom (Compact Disk ROM) 

 

Memory Device Characteristics: 

Cost: Let C be the price in dollars of a complete memory system with S 

bits of storage capacity. We define the cost  c  of the memory as 

follows: 

bit / dollars  
S

C
c   

Access time: The performance of a memory device is primarily 

determined by the rate at which information can be read from or 

written into the memory. A convenient performance measure is the 

average time required to read a fixed amount of information, e.g. 

one word from the memory. This is termed the read access time, or 

more commonly, the access time of the memory and is denoted by 

tA. (The write access time is defined similarity, it is typically, but 

not always, equal to the read access time). Access time depends on 

the physical characteristics of the storage medium, and also on the 

type of access mechanism used. Access time usually calculated 

from the time a read request is received by the memory unit to the 

time at which all the requested information has been made 

available at the memory output terminals. 

 

Read Only Memory (ROM) 

1-ROM 

2-PROM (Programmable ROM) 

3-EPROM (Erasable PROM) 

4-EEPROM (Electrically EPROM) 

1-ROM: Read Only Memory is a non volatile device that the CPU can 

read but cannot write. Computers use them for holding constants that 

specify the system’s configuration. Many ROMs are factory 

programmed, and there is no way to alter their contents. 
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2-PROM: Field engineers can program this type of ROM memory by 

using special high-current device to destroy (burn) fuses that were 

manufactured into the devices. The result of burning a PROM is that 

certain bits are always 0s and the rest are always 1s. These values 

cannot be altered once written. 

3-EPROM: This type of ROM can be erased by ultraviolet light and 

reprogrammed many times. The components in the memory matrix of 

the EPROM complex electronic devices, these devices act like diodes 

that can be turned on or off by the presence or absence of minute 

amounts of electrical charge. 

4-EEPROM: It uses components that are some what similar to those in 

the EPROM. However, the components in the EEPROM can be 

disconnected (thus erasing the memory) electrically rather than by 

exposure to ultraviolet light. 

 

 Random Access Memories (RAM) 

 RAMs are characterized by the fact that every location can be 

accessed independently. The access and cycle times for every location are 

constant and independent of its position. RAM is a memory device that 

the CPU can read and write. Both the reading and writing are 

accomplished through the use of electrical signals. RAM is a volatile 

which mean that it lose their information content whenever the power to 

the system is turned off. Thus RAM can be used only as temporary 

storage. 

 The figure below shows the main components of a RAM unit. The 

storage cell unit comprises N cells, each of which can store 1 bit of 

information.  

 The memory operates as follow: The address of the required 

location is transferred via the address bus to the memory address register, 

the address is then processed by the address decoder which select the 

required location in the storage cell unit. A read-write select control line 

specifies the type of access to be performed. If read is requested, the 

contents of the selected location is transferred to the output data register. 

If write is requested, the word to be written is first placed in the memory 

input data register and then transferred to the selected cell.  
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 The various drivers, decoder and control circuit are collectively 

referred to as the access circuitry of the memory unit. 

 

 

 

 

 

 

 

 

 

General Model of a RAM Cell 

 

 

RAM Organization 

 The access circuitry needed has a very significant effect on the 

total cost of any memory unit. RAM is called matrix or array 

organization. It has two essential features: 

1-The storage cells are physically arranged as rectangular arrays of cells. 

This is primarily to facilitate layout of the connections between the 

cells and the access circuitry. 

2-The memory address is partitioned into d components, so that the 

address Ai of cell Ci becomes a d-dimensional vector  

(Ai,1, Ai,2, …, Ai,d) = Ai. Each of the d parts of an address word goes to 

a different address decoder and a different set of address drivers. A 
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particular cell is selected by simultaneously activating all d of its 

address lines. A memory unit with this kind of addressing is said to be 

a d-dimensional memory. 

If d=1, called one-dimensional or 1-D memories. If the storage capacity 

of the unit is N bits, the access circuitry typically contains one-

out-of N address decoder and N address drivers. 

 

 

 

 

 

 

 

 

 

 

(One-dimensional addressing scheme) 

 

e.g.: d=1, N=16, find number of drivers, address decoder, and number of 

bits of address bus? 

  N = 16, 

  no of drivers = 16. 

  address decoder = 0ne-out-of 16. 

  N = 16 = 2
4
, 

  no of bits in the address bus = 4. 

If d=2, called two-dimensional (2-D) organization. The address field is 

divided into two components called X and Y, which consist of ax 

and ay bits respectively. The cells are arranged in a rectangular 

array of xa
x 2N  rows and ya

y 2N  columns, so that the total no 

of cells is yx NNN  . The 2-D organization requires less 

access circuitry than 1-D for a fixed amount of storage. 

If NNN yx   then, 

The no of address drivers = N2 . 

and two one-out-of N  address decoders. 
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e.g.: if d=2, the address bus consist of 4 bits, find the type and number of 

address decoders, no of rows, no of columns, no of drivers, no of 

total cells? 

since d = 2, address bus = 4 bits 

 X = 2 bits,  Y = 2 bits 

 we need  2  one-out-of 4 decoders (1 for X, 1 for Y) 

 no of rows 422 2aX   

 no of columns 422 2aY   

 N = NX*NY = 4*4 = 16 cells. 

Semiconductor RAMs 

 Semiconductor memories fall into two main categories, static and 

dynamic. 

Static RAMs (SRAM): 

 These devices are composed of flip-flops that use a small current to 

maintain their logic level. The contents of SRAM memory remain 

unchanged for an indefinite period of time as long as the power is on. 

SRAMs are used mostly for the CPU registers and other high speed 

devices, although some computers use them for caches and main 

memory. SRAMs are currently the fastest and most expensive of the 

semiconductor memory circuits. 
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Dynamic RAMs (DRAM): 

 These devices are made with cells that store data as charge of 

capacitors (a device for holding an electrical charge) together with a 

single transistor. This pair of devices is smaller than the two or more 

gates required for each flip-flop in an SRAM. The presence of a positive 

charge on the capacitor (a positive voltage) can be interpreted as a one, 

and its absence (zero voltage) as a zero. Unfortunately, the capacitors 

slowly lose their charges due to leakage. So periodic charge refreshing is 

necessary to maintain data storage. The refresh circuit must refresh the 

charges about every 2ms. 

 A semiconductor RAM IC typically has a word organized array 

structure and contains all required access circuitry including address 

decoders, drivers and control circuits. The figure below shows a simple 

4*2-bits RAM: 
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(Symbol for 4*2-bit RAM) 

 

RAM design: 

 A memory design problem that the computer architect may 

encounter is the following: giving that certain m*n-bit RAM Ics denoted 

Mm*n are available, design an m’*n’-bit RAM, where  m’  m  and/or  

n’  n. a general approach is to construct a p*q array of the Mm*n modules 

where p=m’/m and q=n’/n, when m’  m, additional external address 

decoding circuitry may be required. 

Ex: Design a 16*4-bit memory using 4*2-bit Ics? 

sol: 

 Mm*n = M4*2 

 p = m’/m = 16/4 = 4 rows 

 q = n’/n = 4/2 = 2 columns 

 m’ = 16 = 2
4
 ,  no of address lines = 4, (A0, A1, A2, A3) 

 

 m = 4 = 2
2
 , (A0, A1) 

 m’ = 16 = 2
4
 , (A0, A1, A2, A3) 
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(A 16*4-bit RAM) 

Example: The Intel 2186 64k-bit dynamic RAM 

 This commercial RAM chip, which was introduced in 1983, 

contains 64k one-transistor MOS (Metal Oxide Semiconductor) storage 

cells of the kind shown figure below: 
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Cache memory: 

 A cache is a small fast memory placed between a processor and 

main memory as illustrated in figure: 
 

 

 

 The cache is then the fastest component in the memory hierarchy. 

It can be viewed as a buffer memory for the main memory, so that the 

cache M1 and main memory M2 form a two-level hierarchy. Caches are 

used in various forms to reduce the effective time required by a processor 

to access address, instruction or data that are normally stored in main 

memory. The term cache is usually reserved for a general-purpose buffer 

memory designed to store instruction or data associated with the 

execution of all types of program. 

 Sometimes a cache is used to store instruction but not data, in 

which case the term instruction cache or instruction lookaside buffer are 

used. The advantage of restricting a cache to instruction is that, unlike 

data, instructions do not change, so the contents of an instruction cache 

need never be written back to main memory. 

 When a CPU demands a specific information (e.g. word), the CPU 

first checks the cache for the existence of this word. If not, this means the 

word exist in main memory, therefore, the main memory will transfer this 

word to cache with the block of information nearest to this word. 
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Cache design: 

 The performance goal of adding a cache memory to a computer is 

to make the average memory access time tA seen by the processor as close 

as possible to that of the cache tA1. to achieve this, a high percentage of 

all memory references should be satisfied by the cache, i.e.: the cache hit 

ratio should be close to 1. This is possible because of the  

locality-of-reference property of program. 

Hit:    means the information are in cache. 
Miss: means the information are in main. 

0.9    
Miss of no.  Hits of no.

Hits of no.
  ratio Hit 


  

 

Principle of locality-of-reference: 

 Over any short period of execution time, the addresses and data 

that the program need, are referenced in a specific area of main memory, 

but the other area are discarded not demand. 

 Loops, subprograms, subroutines and arrays are exact example of 

locality-of-references. This principle increases the hit ratio. But JMP and 

GOTO instructions decreases hit ratio because of the continuously block 

replacement.  

The structure of cache memory: 
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 It stores a set of main memory addresses Ai and the corresponding 

data (words) M(Ai). The data entries are grouped into blocks, cache 

pages, or called “lines”. Each of which is a subblock of some main 

memory page, the corresponding stored address is therefore a block 

address. The contents of the cache array are thus copies of a set of small 

non-contiguous main memory blocks tagged with address. 

 

The basic operation of cache: 

 A physical address A is sent to the cache from the CPU at the start 

of a read (load) or write (store) memory access cycle. The cache 

compares the relevant part of A (address tag) to all the addresses it 

currently stores. If there is a match i.e.: a cache hit, then the cache selects 

the desired word M(A) from the data entry corresponding to A. It 

completes the memory cycle by transferring data from the CPU to its 

copy of M(A) (write operation) or else retrieving its copy of M(A) and 

routing it to the CPU (read operation). If A fails to match any of the 

stored addresses, i.e.: a cache miss, then the cache usually initiates a 

sequence of one or more main memory read cycles to copy into the cache. 

The main memory block P(A) containing the desired item M(A). 

 

 

 

 

 

 

 

 

Performance of cache memory: 
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Cs : average cost per byte of system (main + cache) 

Cc : average cost per byte of cache. 

Cm : average cost per byte of main. 

Sc : size of cache. 

Sm : size of main. 

2)  mcs T )H1(T*HT   

Ts : system access time. 

Tc : cache access time. 

Tm : main access time. 

H : hit ratio. 

1-H : miss ratio. 
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Ex: A computer with cache access time equal to 100ns, a main memory 

access time equal to 1000ns, and the hit ratio equal to 0.9. Find the 

average access time of memory? 

Sol: 
 mcs T )H1(T*HT   

      = 0.9 * 100 + 0.1 * 1000 

      = 90 + 100 

      = 190 ns. 

 

Mapping Functions: 

 (mappingقوانين مهمة )مثال يدتخدم لذرح الـ 

 
block of size

main of size
 main in  blocks of .no   

 
block of size

cache of size
  cachein  (lines) slots of .no   

Ex: Suppose cache size = 1 Kbyte, data is to be transferred between main 

and cache in block of 8 bytes, main memory size = 64 Kbyte. Find 

no. of blocks in main, no. of slots in cache? 

Sol: 

 Kblocks 82
2

22

byte 8

kbyte 64

S

S
mainin  blocks of no. 13

3

610

block

main 


  

 slots 1282
2

2

byte 8

kbyte 1

S

S
cachein  slots of no. 7

3

10

block

cache   

1 >> Associative Mapping: 

 A main memory block can be loaded (mapped) in any slot in the 

cache. Therefore, block0 can be mapped in slot0 or slot1 or any other slot 

in the cache. According to the example: 

 

Cache 1 Kb                      Main 64 Kb 

Slot0  Block0 

Slot1 Block1 

: 

: 
: 

: 
Slot 127 

 Block 8191 

 

Main memory address =                13                          3    , 

                                        tag (block addr. in main)   word 
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The main memory address in this method will be in two parts, and 

according to the example, main memory address consists of 16 bits  

(64 Kb), and the block (8 bytes) can represent it by 3 bits, therefore the 

tag will be represented by 13 bits. 

The CPU sends an address for a word to the cache, the tag part of 

main memory address will be compared to all tags in cache (no specified 

slot for specified block), if there is a match, then the word part will be 

picked up from the words part in block. If there is no match, then by the 

tag part the CPU will fetch the specified block from the main memory. 

2 >> Direct Mapping: 

 Allows each block of main memory only one possible cache slot by 

using: 

S = A   modulo   C 

where : S = cache Slot no. 

             A = main memory Address (main memory no). 

             C = total no of slots in Cache. 

According to the example: 

Block 0      S = 0 modulo 128      S = 0 

Block 1      S = 1 modulo 128      S = 1 

Block 127  S = 127 modulo 128  S = 127 

 : 

Block 128  S = 128 modulo 128  S = 0 

Block 129  S = 129 modulo 128  S = 1 

Therefore, 

Blocks 0, 128, 256, 384, ……… mapping on   slot 0 

Blocks 1, 129, 257, 385, ……… mapping on   slot 1 

: 

Blocks 127, 255, …, 8191 …… mapping on   slot 127 

 

Slot 0  Block 0 

Slot 1  Block 1 

: 

: 

 : 

:  

 Block 127 

 Block 128 

Slot 127  Block 129 

  : 

:   

  Block 8191 
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Cache address =    tag     slot    word   , 

 The slot part will be index on cache to determine the desired slot, 

128 slots = 2
7
  7-bits address lines 

 The word part determines which desired word in block, 

8 bytes = 2
3
  3-bits address lines 

 The tag part preferences which block in the current slot, 7-bits for 

slots address lines, 3-bits for word address lines, then 6-bits for tag 

part, or by using this formula: 

6

7

13

2
2

2

128

Kb 8

cachein block  of no

main in block of no

cacheblock each in 

mappedcan  that blocks of no.
  

Cache address =     6         7        3     , 

                              tag     slot    word 

 The CPU sends 16-bits address to the cache, first compare the slot 

part to determine the block, second compare the tag part of the address 

with the tag part in cache to determine which block is in cache now, if 

match, this means the desired block exists (hit), then the desired word 

will be specified by the word part. If not match (miss), then the slot part 

and the tag part will merge to form the desired block address (13-bits) to 

get the block from main memory to cache. 

3 >> Set Associative Mapping: 

 The cache is divided into I sets, each set consists of J slots, we 

have: 

C = I  J 

K = A   modulo   I 

C : total no. of slots in cache. 

I : no. of the sets in cache. 

J : no. of slots in each set. 

K : cache set no. 

A : block address (block no. coming from main memory) 

 With this algorithm, the block containing address A can be mapped 

into any slot in set I. if I = C, J = 1, the set associative technique reduces 

the direct mapping, and for I =1, J = C, it reduces to associative mapping. 

 For example, if the no. of slots = 2 in each set, then the no. of set 

is:     128 / 2 = 64 sets in cache. 

 Any coming block from main memory will be mapped into any 1 

of 2 slots in the specified set. The set will be specified by using: 

K = A   modulo   I 
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Block 0      K = 0 modulo 64      K = 0 

Block 1      K = 1 modulo 64      K = 1 

Block 63    K = 63 modulo 64    K = 127 

Block 64    K = 64 modulo 64    K = 0 

Therefore, 

Blocks 0, 64, 128, 192, ………… mapping on set 0 

Blocks 1, 65, 129, 193, ………… mapping on set 1 

: 

Blocks 63, 127, 191, …, 8191 …  mapping on set 63 

 

Cache address =    tag     set     word   , 

 

 The word part, as previous,  

8 bytes  3-bits address lines. 

 The set part calculated as:  

64 sets = 2
6
 sets  6-bits address lines. 

 The tag part preferences which block in the current slot, 6-bits for 

the set address lines, 3-bits for word address lines, then 7-bits for tag 

part, or by using this formula: 

7

6

13

2
2

2

64

Kb 8

cachein set  of no

main in block of no

seteach in  mapped

can that blocks of no.
  

Cache address =     7         6        3     , 

                              tag     set     word 

Note: The hit ratio in the set associative mapping is larger than the direct 

mapping but less from the associative mapping. 

 

  Block 0 

  Block 1 

  : 

:   

: 
 Block 63 

 Block 64 

  Block 65 

  : 

:   

  Block 8191 

 

Set 0 

Set 1 

Set 63 
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Replacement Algorithm: 

 When a new block is brought into the cache, one of the existing 

blocks must be replaced.  

 For direct mapping, there is one possible slot for any given block 

and no decision is needed. 

 For the associative & set associative mapping, a replacement 

algorithm is needed. 

Replacement Types (Algorithms): 

1) First – In – First – Out (FIFO) 

Replace that block in the set which has been in the cache longest. 

2) Least Frequently Used (LFU) 

Replace that block in the set which has experienced the fewest 

references. 

3) Least Recently Used (LRU) 

Replace that block in the set which has been in the cache longest with 

no reference to it. 

Write Policy: 

1) Write Through: 

All writes operations are made to main memory as well as to the 

cache, ensuring that the main memory is always valid. The main 

disadvantage of this technique is that there is an unnecessarily high 

rate of memory writes. 

2) Write Back (CopyBack) 

Minimizes memory writes with write back, updates are made in the 

cache. When an update occurs, an update-bit associated with the slot is 

set (update-bit = 1). Then, when a block is replaced, it is written back 

to main memory if and only if the UPDATE-bit is set. It has the 

disadvantage that M1 and M2 can be inconsistent, i.e. have different 

data associated with the same physical address. This inconsistent 

found when more than one CPU work on the same main memory. 
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Virtual Memory: 

 The operating system is used to produce the illusion of an 

extremely large memory. Since this large memory an illusion, it is called 

Virtual Memory. In virtual memory systems, the operating system loads 

only part of a program, the currently active part in main memory. 

 Virtual memory is used in large computer systems which allow the 

user to store large amount of data and programs in the secondary 

memory. Every address (virtual address) goes out of the CPU, passes 

through process steps to transform the virtual address to a physical 

address in the main memory. 

 If we have a big application program larger than the main memory 

size, then by using the virtual memory concept we can load this 

application to the main memory and then execute it. Where the active 

parts of the program will be loaded from the secondary memory to the 

main memory and will be executed by the CPU as dependent programs. 

This will achieved by the OS (operating system), where one of the OS 

responsibility is to manage the memory by controlling the memory and 

the data transmittance. 

 Virtual memory systems generally use one or both of two 

techniques for mapping effective addresses (CPU addresses) into physical 

addresses: paging and segmentation. 

Ex: 

                        Auxiliary memory                        Main memory 

                              1M=1024K                                     32K 

   

Program 1  

Data 1,1  

Data 1,2 Program 1 

:  

:  

:  

Program 2 Data 1,1 

Data 2,1  

  

  

 

 

Virtual 

address Physical 

address 

no of location (address space) = 1M = 2
20 

no of location (memory space) = 32K = 2
15 
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From the figure above, we see that the secondary memory is larger 

32 times than the main memory.  

In this example, the CPU will issue the instruction & data 

addresses with length of 20-bits, but these instruction and data are 

currently exist in main memory (remember that the desired application 

and data to be executed had already transmitted from auxiliary memory to 

the main memory).  

Therefore, we need such a table to convert the virtual addresses 

(with length 20-bits) to physical addresses (with length 15-bits). This 

process achieved dynamically, meaning that every address issued by the 

CPU will be converted directly and automatically to a physical address. 

 

 

CPU Virtual address Memory 

mapping 

table 

Physical 

address Main 

memory 

Data 
Data 

bus 

to 

CPU (20-bits) 
Address bus 

from CPU 
(15-bits)  

 

Paging: 

 Is a hardware-oriented technique for managing physical memory. 

Architects introduced paging so that large programs could run on 

computers with small physical memories. In essence, the computer loads 

into main memory only those parts of the program that it currently needs 

for execution. The remainder of the program resides in external storage 

until needed. 

 In paging system, the virtual memory hardware divides logical 

addresses into two parts: a page number and a word offset within the 

page. The hardware makes this division by partitioning the bits of the 

address to the following: the high order bits are the page number and the 

low order bits are the word offset. 

The units of physical memory that hold pages are called page-

frame (or sometimes called blocks). 
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 The page table in the main memory consist of many entries equal 

to the number of the existence pages. Each entry gives the specifications 

of a specific page, these specifications are: 

1- V: (Valid) used to determine whether the desired page exist now in the 

main memory or not. If V=1 means that the page of this entry exist 

now in the main memory, but if V=0 means that this page is not in the 

main memory but it is now still exist in the second memory. 

2- D: (Dirty) used to determine whether the page of this entry has been 

changed or not. If D=0 means the page has not been changed, but if 

D=1 means that the contents of this page has been changed, then the 

system will make a copy of this page to the secondary memory. 

3- Protection: used for page protection, and consist of 2-bits, this 

protection include the protection for the instruction page from any 

change (write), and as follow: 

Virtual 

Page no. 
Byte 

offset 
Page table 

base address 

Virtual 

Page no. V  D 

Effective address 
Page table 

base register 

Prote- 

ction 
Page-frame 

no. 

Control logic 

Page-frame no. Byte offset 
Physical address 

TLB 

V  D Prote- 

ction 
Page-frame 

no. 

Operand  

Page table in memory 

(Components of a Paging System) 
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Protection Meaning 

0 0 The page is for instruction only 

0 1 The page is for read only 

1 0 The page is for read and write  

1 1 Nothing 

4- Page frame no.: hold the number of the page determined by this entry 

in the main memory. 

Note: from the figure, we see the hardware part, that is, the page table 

base register, which provides the beginning address of the page table 

in the main memory. 

TLB (Translation Lookaside Buffer) 

 A small cache, some hardware systems maintain it as part of the 

page map (memory map). TLB holds essentially the same information as 

part of the page table. In general, a TLB holds entries only for the most 

recently accessed pages and only for valid pages, that is, pages that have 

an image in main memory (exact copies of the data). 

 For a paging system, whenever the CPU generates an effective 

address, the CPU sends it to the TLB, which produces the page-frame no. 

if it holds an entry for the page. If the TLB has no entry, the hardware 

consults the page table in main memory by using the page no. as an offset 

into the page table.  

 If the validity bit (V=1) indicates the page is in main memory, the 

hardware uses the page frame no. to access the memory and 

simultaneously copies the page table entry into the TLB. Otherwise, the 

hardware initiates a trap (interrupt) called a page fault, at which point the 

OS intervenes to load the demanded page in memory and updates the 

page table. 

 The number of entries in the page table is not fix, because it 

depends on the: 1-size of the applied program, 2-size of a single page. For 

example, if the size of the applied program is 20KB, and the size of the 

page is 4KB, then the number of pages used by this program is 5 pages. 

So, the number of the entries for this application in 5 entries, each of 

which contains the specifications of a single page. 

 The advantage of TLB is to speed up the system. If the TLB is not 

there, then the CPU reference to the main memory will be twice, once for 

searching the page entry inside the page table in the main memory, and 

second to access the data inside the page in the main memory after 
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creating the physical address. While by the existence of the TLB, the 

CPU will reference the main memory once to access the data there, when 

the demanded entry is exists in TLB. 

Page Thrashing: 

 The state of excessively moving pages between memory and 

secondary storage. So the CPU spends most of it’s time swapping pages 

rather than executing instructions. 

 For all types of paging systems, whenever a page fault occurs, the 

OS must decide in which page frame to put the demanded page. The OS 

will choose an empty page frame wherever possible. However, if all the 

page frames are occupied, the OS must delete an existing page to make 

room for the new page. OS use several different policies to do so. 

Page Replacement Policies: 

1- FIFO: The first page came to the main memory, the first page goes out 

of it (the oldest page has been loaded, the first page goes out). 

2- LRU: The fewest reference page goes out. 

Ex: Suppose the memory space has 3 pages, and the referenced page is: 

4,2,3,4,5,1,4. Show the replacement policies using FIFO & LRU? 

 

 4  2  3  4  5  1  4 

FIFO: 

4*  4*  4*  4*  5  5  5* 

  2  2  2  2*  1  1 

    3  3  3  3*  4 

       Hit       

 

 4  2  3  4  5  1  4 

LRU: 

4*  4*  4*  4  4  4*  4 

  2  2  2*  5  5  5* 

    3  3  3*  1  1 

       Hit      Hit 
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Ex: An address space is specified by 24 bits and the corresponding 

memory space by 16 bits. Find: 

a) How many words are there in the address space? 

b) How many words are there in the memory space? 

c) If a page consists of 2K words, how many pages are there 

in the system? 

Sol: 

a) no. of words in address space = 2
24

 = 2
4
2

20
 = 16 M words. 

b) no. of words in memory space = 2
16

 = 2
6
2

10
 = 64 K words. 

c) no. of pages = 
pageeach in   wordsof no

space addressin   wordsof no
 

                         8192K822
22

22 103

101

204





  

Segmentation: 

 Like paging, segmentation is a virtual memory technique. 

Segmentation differs from paging in a number of ways: Instead of 

dividing logical addresses into pages of a fixed size and main memory 

into fixed size page frames. The hardware divides logical addresses into 

segments of arbitrary size, and the processor treats main memory as a 

single block. 

 Segments that contains only procedure code are called (Code 

Segment), and those with only data are called (Data Segment). Segment 

tend to be much larger than pages (frequently as large as 64KB).  

Moreover, segments can usually range in size, where pages are 

always in one size. For a given system-segment sizes are chosen to reflect 

the sizes of the corresponding code or data they contain. 

 The size of the segments determined by the OS, or by the user if 

the user use the assembly language to expand the size of the segments.  

The protection of data using the segmentation technique is better 

than the protection using paging technique. 
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Size: holds the size of the segment. 

 The physical address in paging technique found by binding the 

byte offset with page frame. But in segmentation technique, the physical 

address found by gathering the byte offset with segment address. 

Segmentation with Paging: 

 Paging and segmentation can be combined in an attempt to give the 

advantages of both. This is done, by dividing each segment into pages. 

The memory map consists of segment table and set of page tables, one of 

each segment address is a pointer to the base of the corresponding page 

table. The page table is used in the usual way to determine the required 

physical address. 

Segment 

number 
Byte 

offset 
Seg. table 

base address 

Virtual 

Seg. no. V  Size D 

Effective address 
Segment  table 

base register 

Prote- 

ction 
Seg. base 

address 

Control logic 

Physical Address 

TLB 

V Size D Prote- 

ction 
Seg. base 

address 

Operand  

Segment  table in memory 

+ 

Main Memory 

(Components of Segmentation System) 
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 The greater advantage of breaking a segment into pages is that: 

elimination the need to store the segments in contiguous region of main 

memory. 

 In brief, the program is divided into segments, and the system will 

deal with each segment as a separate program, so, each segment need to 

be divided into many pages. Therefore, it will need a one single segment 

table with many page tables. 

 

Program  Segment 0  Memory 

Segment 0  Page 0  Page 0 

Segment 1  Page 1  : 

:  :  Page n 

:  Page n  : 

:    Page 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CPU 

Segment  Page Word 

+ 

block Word 

Logical    Address 

Segment table Page table 

Physical Address 
(Logical to Physical address mapping) 
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Ex: Suppose logical address length =20 bits, divided into the following: 

segment field =4 bits, page field =8 bits, word field =8 bits, find: 

1) Total segments? 

2) Total pages in each segment? 

3) Total words in each page? 

4) Number of words in the smallest segment size? 

5) Number of words in the largest segment size? 

6) Number of blocks in main memory? 

Sol: 

Segment Page Word 

4 8 8 

   

12 Block 8 

1) Total segments = 2
4
 16 segment. 

0  segment number  15 

2) Total pages in each segment = 2
8
 = 256 pages 

0  page number  255 

3) Total words in each page = 2
8
 = 256 words 

0  word number  255 

4) Smallest segment will have 1 page, 

 one page consists of 2
8
 = 256 words. 

5) Largest segment will have 2
8
 (256) pages, 

 2
8
 pages  2

8
 words = 2

16
 words = 2

6
  2

10
 = 64 Kwords. 

6) No. of blocks in main = 2
12

 = 4 K block in main memory. 

Ex: The logical address space in a computer consists of 256 segments. 

Each segment can have up to 64 pages of 1K words. 

a) Formulate the logical address format? 

b) Give the binary representation of the logical address format for 

segment 20 and word number 16 in page 15? 

Sol:  

No. of segment = 256 = 2
8
  8 bits of segment field. 

No. of pages = 64 = 2
6
  6 bits of page field. 

No. of words = 1K = 2
10

  10 bits of word field. 

a) 

 Segment Page Word 

Logical Address 8 6 10 

b) 

Segment Page Word 
0 0 0 1 0 1 0 0 0 0 1 1 1 1 0 0 0 0 0 1 0 0 0 0 
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Direct Memory Access (DMA) 

 The transfer of data between a fast storage device such as magnetic 

disk and memory is often limited by the speed of the CPU. Removing the 

CPU from the path and letting the peripheral device manage the memory 

buses directly would improve the speed of the transfer. This transfer 

technique is called direct memory access (DMA). 

 During DMA transfer, the CPU is idle and has no control of the 

memory buses. A DMA controller takes over the buses to manage the 

transfer directly between the I/O device and memory. 

 DMA circuits are used to increase the speed of I/O operations and 

eliminate most of the role played by the CPU in such operations. Special 

control line to which we assign the generic names DMA REQUEST go 

from the I/O devices to the CPU. 

 

 

 

 

 

 

 

 

(DMA breakpoint during an instruction cycle) 

  

This figure shows a typical sequence of CPU actions during an 

instruction cycle. Thus, during the instruction cycle, there are five points 

in time (breakpoints) when the CPU can respond to a DMA request. 

When the CPU receives such a request, it waits until the next breakpoint, 

releases the system bus, and signals the requesting I/O device by 

activating a DMA ACKNOWLEDGE control line. 

CPU 

cycle 
Fetch 

instruction 
Decode 

instruction 
Fetch 

operand 
Execute 

instruction 
Store  

result 

DMA 

breakpoint 
Interrupt 

breakpoint 

Instruction Cycle 
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Essential Parts of DMA Controller 

1) IODR (IO Data Register): contains the data that will be transferred 

from main memory to the IO device or from IO device to the main 

memory. 

2) IOAR (IO Address Register): contains the address of the data to be 

transferred. This register is incremented after each word that is 

transferred to memory. 

3) DC (Data Count) (Word Count Register): holds the number of words 

to be transferred. This register is decremented by one after each word 

transfer and internally tested for zero. 

4) Control Unit: controls the DMA controller, and specifies the mode of 

transfer. 

Types of DMA 

 When the DMA takes control of the bus system, it communicates 

directly with the memory. The transfer can be made in several ways: 

1) (Burst Transfer) Block Transfer 

 In DMA burst transfer, a block sequence consisting of a number of 

memory words is transferred in a continuous burst while the DMA 

controller is master of the memory buses. This mode of transfer is needed 

AR AC 

IR Control 

unit 

CPU 

DC IOAR IODR 

Control 

unit 

DMA controller 

address 

data 

DMA request 
DMA acknowledge 

IO device 

System 

bus 

(Circuitry required for DMA) 
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for fast devices where data transmission cannot be stopped or slowed 

down until an entire block is transferred. 

2) Cycle Stealing 

 Allows the DMA controller to transfer one data word at a time, 

after which it must return control of the buses to the CPU. This means 

that long blocks of IO data are transferred by a sequence of DMA bus 

transactions interspersed  اجراا نثررا( with CPU bus transactions. The CPU 

merely delays its operation for one memory cycle to allow the direct 

memory I/O transfer to “steal” one memory cycle. 

3) Transparent DMA 

 Designing the DMA interface so that bus cycles are stolen only 

when the CPU is not actually using the system bus. 

DMA Transfer 

1) The CPU executes two IO instructions, which load the DMA register 

IOAR with the base address of the main memory region to be used in 

the data transfer and DC register with the number of words to be 

transferred. 

2) When the DMA controller is ready to transmit or receive data, it 

activates the DMA REQUEST line to the CPU, the CPU wait for the 

next DMA breakpoint. It then relinquishes control of the data and 

address lines (system bus) and activates the DMA 

ACKNOWLEDGE. 

3) The DMA controller now transfers data directly to or from main 

memory. After a word is transferred, IOAR incremented and DC 

decremented. 

4) If DC is not decremented to zero but the IO device is not ready to send 

or receive the next batch of data, the DMA controller returns control 

to the CPU by releasing the system bus and deactivating the DMA 

REQUEST line. The CPU responds by deactivating DMA 

ACKNOWLEDGE and resuming normal operation. 

5) If DC is decremented to zero, the DMA controller again relinquishes 

control of the system bus. It may also send an interrupt signal to the 

CPU. The CPU responds by halting the IO device by initiating a new 

DMA transfer. 
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CPU 

 The things that the CPU must do: 

1- Fetch Instruction: The CPU must read instruction from memory. 

2- Interpret Instruction: The instruction must be decoded to determine 

what action is required. 

3- Fetch Data: The execution of an instruction may require reading data 

from memory or an I/O module. 

4- Process Data: The execution of an instruction may require performing 

arithmetic or logical operation on data. 

5- Write Data: The result of an execution may require writing data to 

memory or I/O module. 

  

The major components of CPU are: 

1- ALU. 

2- Registers. 

3- Control Unit. 

 

 

 

 

 

 

(CPU with the system bus) 
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(Internal Structure of the CPU) 

Register Organization 

The registers in the CPU save two functions: 

1- User Visible Register:  

To enable the machine or assembly language programmer to 

minimize main memory references by optimizing use of registers. We 

can characterize these registers in the following categories: 

 General purpose. 

 Data. 

 Address (i.e.: segment register) 

 Condition codes (i.e.: flag register) 

2- Control and Status Registers:  

These are used by the control unit to control the operations of the 

CPU and the execution of program. 

Four registers are essential to instruction execution: 

 Program Counter (PC): Contains the address of an instruction to be 

fetched. 

 Instruction Register (IR): Contains the instruction most recently 

fetched. 

 Memory Address Register (MAR): Contains the address of a 

location in memory. 
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 Memory Buffer/Data Register (MBR) (MDR): Contains a word of 

data to be written to memory or the word most recently read. 

 

 

 

 

 

Control Unit 

 The purpose of the control unit is to issue control signals or 

instruction to the data processing part. These control signals select the 

function to be performed at specific times and rout the data through the 

appropriate functional units. 

Implementation Methods 

1- Hardwired Control. 

2- Microprogrammed Control. 

1)) Hardwired Control 

 This implementation views the control unit as a sequential logic 

circuits to generate specific fixed sequence of control signals. Once 

constructed change in behaviour can be implemented only by 

redesigning, and physically rewiring the unit. 

 For designing such an implementation, the designers take the 

instruction set and designing the hardwired part for each instruction under 

consideration of all possibilities of each instruction, then they build the 

boolean algebra functions which represent the output of logical gates. 

These output represent the control signals. Meaning that each control 

signal generated by logical circuits for one specific instruction. 

 This type of implementation used in RISC computers (Reduce 

Instruction Set Computer). And because of constructing this unit from 

many logical gates, it guarantees speed for such unit, but also it increases 

the heat of this unit and consequently increases the heat of the CPU, 

therefore, a fan is needed for cooling the CPU. 

MAR MBR ن

Memory 

Address 

Bus 
Data 

Bus 

read 
write 
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2)) Microprogrammed Control 

 It is a method of control design, which the control signal selection 

and sequencing information is stored in control memory (CM), which 

stored in the control unit in the CPU.  

The control signals to be activated at any time by a 

microinstruction. This microinstruction is fetched from the CM in much 

the same way an instruction is fetched from main memory. 

 The CM containing the microinstructions that are generates the 

control signals. For executing such a microinstruction, it must fetch this 

microinstruction from the CM, then decoding it, then executing it. 

Therefore, the microinstruction consists of many bits, each of represent a 

microoperation. Each bit controls one control line, if this bit is 0, it means 

this line is inactivated, if this bit is 1, it means this line is activated. 

 Any change in behaviour of an instruction, it needs to change the 

values of the bits inside the CM form 0 to 1 or from 1 to 0. Thus, this 

method is easy and quick and more flexible if need a change, but it is 

slower than the hardwired in execution. 

Microprogram:  

The sequence of microinstructions that represent a single machine 

instruction. 

Microinstruction:  

The set of microorders issued by the control unit at one a time. 

Microorders (Microoperation):  

Individual signals sent over dedicated lines to control individual 

components and devices. 

 

 

PC MAR 
Control line 



Computer Architecture  37 

Ex: Explain the microinstruction for the instruction ( ADD C ), where the 

number of the control lines of the system is equal to 7 and illustrated 

in this figure: 
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 Let us assume that each instruction occupies one memory word. 

Therefore, execution of one instruction requires the following three steps 

to be performed by the CPU: 

1- Fetch the contents of the memory location pointed at by the PC. The 

contents of this location are interpreted as an instruction to be 

executed. Hence, they are stored in the instruction register (IR). 

Symbolically, this can be written as: 

IR  [[PC]] 

2- Increment the contents of the PC by 1. 

PC  [PC] + 1 

3- Carry out the actions specified by the instruction stored in the IR. 

 Steps 1 and 2 can be repeated as many times as necessary to fetch 

the complete instruction. These two steps are usually referred to as the 

fetch phase, while step 3 constitutes the execution phase. 

 The figure below shows the arithmetic and logic unit (ALU) and all 

CPU registers are connected via a single common bus. This bus is 

internal to the CPU, and should not be confused with the external bus, or 

buses connecting the CPU to the memory and I/O devices. The external 

memory bus is connected to the CPU via the memory data and address 

registers MDR and MAR. the number and function of registers R0 to 

R(n-1) vary from one machine to another. They may be provided for 

general-purpose used by the programmer, some of them may be dedicated 

as special-purpose registers, such as index registers or stack pointers. 

 The registers Y and Z used only by the CPU for temporary storage 

during execution of some instructions. However, they are never used for 

storing data generated by one instruction. 

 Most of the operations in steps 1 to 3 can be carried out by 

performing one or more of the following functions in some pre-specified 

sequence: 

1- Fetch the contents of a given memory location and load them into a 

CPU register. 

2- Store a word of data from a CPU register into a given memory 

location. 

3- Transfer a word of data from one CPU register to another or to the 

ALU. 

4- Perform an arithmetic or logic operation, and store the result in a CPU 

register. 

 Let us now consider in some detail the way in which each of the 

above functions is implemented in a typical computer. 
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Figure 1: (Single-bus organization of the data paths inside the CPU) 
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1) Fetching a word from memory (Read Fetch): 

 To fetch a word of information from memory, the CPU has to 

specify the address of the memory location where this information is 

stored and request a READ operation. This applies whether the 

information to be fetched represents a new instruction in a program or a 

word of data (operand) specified by an instruction. 

 Thus, to perform a memory fetch, the CPU transfers the address of 

the required information word to the memory address register (MAR). 

Then this address is transferred to the main memory. Meanwhile, the 

CPU uses the control lines of the memory bus to indicate that a READ 

operation is required. Then, the CPU waits until it receives an answer 

from the memory, informing it that the requested function has been 

completed, this is accomplished through the use of another control signal 

on the memory bus, which will be referred to as memory-function-

completed (MFC). 

 As soon as the MFC signal is set to 1, the information on the data 

lines is loaded into MDR and is thus available for use inside the CPU. 

 As an example, assume that the address of the memory location to 

be accessed is in register R1 and that the memory data is to be loaded into 

register R2. This is achieved by the following sequence of operation: 

1. MAR  [R1] 

2. READ 

3. Wait for the MFC signal 

4. R2  [MDR] 

The duration of step 3 depends upon the speed of the memory used. 

The functions that do not require the use of MDR or MAR can be carried 

out during the MFC. Such a situation arises during the fetch phase, that is 

the PC can be incremented while waiting for the Read operation to be 

completed. 

The transfer mechanism where one device initiates the transfer 

(READ request) and wait until the other device responds (MFC signal) is 

referred to as an asynchronous transfer. It can be easily seen that this 

mechanism enable transfer of data between two independent devices that 

have different speeds of operation. An alternative scheme that can be 

found in some computers uses synchronous transfers. 
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2) Storing a Word into Memory (Write): 

 The data word to be written should be loaded into the MDR before 

the WRITE command is issued. Assume that the data word to be stored in 

the memory is in R2 and that the memory address is in R1, the WRITE 

operation requires the following sequence: 

1. MAR  [R1] 

2. MDR  [R2] 

3. WRITE 

4. Wait for MFC 

Steps 1 and 2 are independent. Therefore, they can be carried out in 

any order. In fact, steps 1 and 2 can be carried out simultaneously, this 

would not be possible in the single-bus organization. 

 

3) Register Transfers: 

 The input and output gates for register Ri are controlled by the 

signals Riin and Riout , respectively. Thus, when Riin is set to 1, the data 

available on the common bus is loaded into Ri. Similary, when Riout is set 

to 1, the contents of register Ri are placed on the bus. While Riout is equal 

to 0, the bus can be used for transferring data from other registers. 

 For example, to transfer the contents of register R1 to register R4, 

the following actions are needed: 

 Enable the output gate of register R1 by setting R1out to 1. This 

places the contents of R1 on the CPU bus. 

 Enable the input gate register R4 by setting R4in to 1. This loads 

data from the CPU bus into register R4. 

This data transfer can be represented symbolically as 

R1out , R4in  
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Figure 2: (input and output gating for the registers in Figure 1) 
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4) Performing an Arithmetic or Logic Operation: 

 The two numbers to be added should be made available at the two 

inputs of the ALU simultaneously. Register Y in figure 1, is provided for 

this purpose. It is used to hold one of the two numbers while the other 

number is gated to the bus. The result is stored temporarily in register Z. 

therefore, the sequence of operations to add the contents of register R1 to 

register R2 and store the result in register R3 should be as follows: 

 

Step          Action 

1. R1out , Yin 

2. R2out , Add , Zin 

3. Zout , R3in 

 

 In step 2 of this sequence the contents of register R2 are gated to 

the bus, hence to input B of the ALU which is connected directly to the 

bus. The contents of register Y are always available at input A. the 

performed by the ALU depends upon the signal applied to the ALU 

control lines. In this case, the ADD line is set to 1, causing the output of 

the ALU to be the sum of the two numbers at A and B. this sum is loaded 

into register Z, since its input gate is enabled (Zin). in step 3, the contents 

of register Z are transferred to the destination register R3. 

 

Multibus Organization: 
 

 The single-bus organization of figure 1 represents only one of the 

possibilities for interconnecting different building blocks of the CPU. An 

alternative arrangement is the two-bus structure shown in figure 3. All 

register outputs are connected to bus A, and all register inputs are 

connected to bus B. The two buses are connected through the bus tie G, 

which, when enabled, transfers the data on bus A to bus B. When G is 

disabled, the two buses are electrically isolated. Note that the temporary 

storage register Z in figure 1 is not required in this organization because, 

with the bus tie disabled, the output of the ALU can be transferred 

directly to the destination register. For example, the addition operation 

(R3  [R1] + [R2]) can now be performed as follows: 

 

Step       Action 

1. R1out , Genable , Yin 

2. R2out , Add , ALUout , R3in  
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 Figure 3: (Multi-bus organization of the data paths inside the CPU) 
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Execution Of A Complete Instruction 

 Let us now try to put together the sequence of elementary 

operations required to execute one instruction. Consider the instruction 

“Add contents of memory location NUM to register R1”. 

ADD  R1 , [NUM] 

 Figure 4 gives the sequence of control steps required to implement 

the above operations for the single-bus architecture of figure 1. Thus, 

instruction execution proceeds as follows: 

 

Step       Action 

1. PCout , MARin , Read , Clear Y , Set carry-in to ALU , Add , Zin 

2. Zout , PCin , Wait for MFC 

3. MDRout , IRin 

4. Address-field-of-IRout , MARin , Read 

5. R1out , Yin , Wait for MFC 

6. MDRout , Add , Zin 

7. Zout , R1in 

8. End  

Figure 4: “Add contents of memory location to register R1” 

 In step 1, the instruction fetch operation is initiated by loading the 

contents of the PC into the MAR and sending a Read request to the 

memory. At the same time the PC is incremented by 1 through the use of 

the ALU. This is accomplished by setting one of the inputs to the ALU 

(register Y) to 0 and by setting the other input (CPU bus) to the current 

value in PC. At the same time the carry-in to the ALU is set to 1 and an 

Add operation is specified. The updated value is moved from register Z 

back into the PC during step 2. Note that step 2 is started immediately 

after issuing the memory Read request without the need to wait for MFC. 

Step 3, however, has to be delayed until the MFC is received. In step 3, 

the word fetch from the memory is loaded into the IR. Step 1 through 3 

constitutethe instruction fetch phase of the control sequence. Of course, 

this portion is the same for all instructions. 

 Steps 4 to 8, which can be referred to as the execution phase. In 

step 4, the address field of the IR, which contains the address NUM, is 

gated to the MAR, and a memory Read operation is initiated. Then the 

contents of R1 are transferred to register Y. when the Read operation is 

completed, the memory operand is available in register MDR. The 

addition operation is performed in step 6, and the result is transferred to 

R1 in step 7. The End signal, step 8, indicates completion of execution of 

the current instruction and usually causes a new fetch cycle to be started 

by going back to step 1. 
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EXAMPLES: 

EXG    R1 , R2 

Step       Action 

1. PCout , MARin , Read , Clear Y , Set carry-in to ALU , Add , Zin 

2. Zout , PCin , Wait for MFC 

3. MDRout , IRin 

4. R1out , Yin 

5. R2out , R1in 

6. Yout , R2in 

7. End  

CLEAR R1 

Step       Action 

1. PCout , MARin , Read , Clear Y , Set carry-in to ALU , Add , Zin 

2. Zout , PCin , Wait for MFC 

3. MDRout , IRin 

4. Clear Y , Yout , R1in 

5. End  

INC [NUM] 

Step       Action 

1. PCout , MARin , Read , Clear Y , Set carry-in to ALU , Add , Zin 

2. Zout , PCin , Wait for MFC 

3. MDRout , IRin 

4. MDRout, MARin , Read 

5. Wait for MFC 

6. MDRout , Clear Y , Set Carry , Add , Zin 

7. Zout , MDRin , Write 

8. Wait for MFC 

9. End  

RETURN 

Step       Action 

1. PCout , MARin , Read , Clear Y , Set carry-in to ALU , Add , Zin 

2. Zout , PCin , Wait for MFC 

3. MDRout , IRin 

4. SPout , MARin , Read , Clear Y , Set Carry , Add , Zin 

5. Zout , SPin , Wait for MFC 

6. MDRout , PCin 

7. End  
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Branching 

 Branching is accomplished by replacing the current contents of the 

PC by the branch address, that is, the address of the instruction to which 

branching is required. The branch address is usually obtained by adding 

an offset X, which is given in the address field of the branch instruction 

to the current value of the PC.  

 Figure 5 gives a control sequence that enables execution of an 

unconditional branch using the single-bus organization of figure 1. 

Execution starts as usual with the fetch phase until the instruction is 

loaded into the IR in step 3. To execute the branch instruction, the 

contents of the PC are transferred to register Y in step 4. Then, the offset 

X is gated to the bus, and the addition operation is performed. The result, 

which represents the branch address, is loaded into the PC in step 6. 

 

Step       Action 

1. PCout , MARin , Read , Clear Y , Set carry-in to ALU , Add , Zin 

2. Zout , PCin , Wait for MFC 

3. MDRout , IRin 

4. PCout , Yin 

5. Address-field-of-IRout , Add , Zin 

6. Zout , PCin 

7. End  

Figure 5: (Control sequence for an unconditional branch instruction) 

The offset X should be the difference between the branch address 

and the address immediately following the branch instruction. For 

example, if the branch instruction is at location 1000, and it is required to 

branch to location 1050, the value of X should be set to 49. 

Consider now the case of a conditional branch. The only difference 

between this case and that is the need to check the status of the condition 

codes between step 3 and 4. For example, if the instruction decoding 

circuitry interprets the contents of the IR as a Branch on Negative (BRN) 

instruction, the control unit proceeds as follows. First, the condition code 

register is checked. If bit N (negative) is equal to 1, the control unit 

proceeds with step 4 through 7 as in figure 5 (adding offset X). If N is 

equal to 0, an End signal is issued. This terminates execution of the 

branch instruction and causes the instruction immediately following in 

the program to be fetched when a new fetch operation is performed. 
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Therefore, the control sequence for the conditional branch 

instruction BRN can be obtained in figure 6. 

 

Step       Action 

1. PCout , MARin , Read , Clear Y , Set carry-in to ALU , Add , Zin 

2. Zout , PCin , Wait for MFC 

3. MDRout , IRin 

4. if N  then End 

5. else PCout , Yin 

6. Address-field-of-IRout , Add , Zin 

7. Zout , PCin 

8. End  

Figure 6: (Control sequence for an conditional BRN instruction) 

If the instruction decoding circuitry interprets the contents of the 

IR as a Branch on Zero (BRZ) instruction, the control unit proceeds as 

follows: 

 

Step       Action 

1. PCout , MARin , Read , Clear Y , Set carry-in to ALU , Add , Zin 

2. Zout , PCin , Wait for MFC 

3. MDRout , IRin 

4. if Z  then End 

5. if Z then  

6. PCout , Yin 

7. Address-field-of-IRout , Add , Zin 

8. Zout , PCin 

9. End  
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Parallelism in Microinstructions: 

 Microprogrammable processors are frequently characterized by the 

maximum number of microoperations that can be specified by a single 

Microinstruction. This number can vary from one to several hundred. 

Microinstructions that specify a single microoperation are quit similar to 

conventional machine instructions. They are relatively short, but due to 

the lack of parallelism, more microinstructions may be needed to perform 

a given operation. 

 Microinstructions are often designed to take advantage of the fact 

that at the microprogramming level, many operations can be performed in 

parallel. 

Types of Microinstructions: 

1) Horizontal Microinstructions. 

2) Vertical Microinstructions. 

1) Horizontal Microinstructions:  

In this form, for each microorder one bit is provided to achieve a 

corresponding microoperation. Each bit is a control field for a control 

line. Horizontal microinstructions have the following general attributes: 

1- Long formats, thus the CM width depends on how long this format is? 

2- Ability to express a high degree of parallelism. 

3- Little encoding of the control information. 

 

 

 

 

 

 

2) Vertical Microinstructions: 

 This type of microinstructions divided into control fields that each 

control field represented by many control bits. Therefore, each control 

field must be connected to a decoder from which the control signals are 

derived. This type has the following attributes: 

1- Short format. 

2- Limited ability to express parallel microoperations. 

0   1   2  ……………………………………13 

Control fields 

Control lines 
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3- Considerable encoding of the control information. 

 

 

 

 

 

 

 

 For a single control field microinstruction, there is no parallelism 

will be achieved, thus only a single one microoperation will take place in 

one cycle. 

 

 

 

 

 

 

 

 But for more control fields, each control field will achieve in a 

single microoperation, therefore, a few parallelisms will appear in one 

cycle. 

 Sometimes the two formats can be used together in a new format. 
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