
Computer Architecture 1

 Computer Architectureمعمارية الحاسبة

Computer Architecture: is the design of computers including their

instruction sets, hardware components and system organization.

There are two essential parts of computer architecture:

1-Instruction Set Architecture (ISA)

2-Hardware System Architecture (HSA)

Instruction Set Architecture (ISA): Includes the specifications that

determine how machine language programmers will interact with

computer.

 A computer is generally viewed in terms of its ISA, which

determines the computational characteristics of the computer.

Hardware System Architecture (HSA): Deals with the computer’s

major hardware subsystems, including its central processing unit (CPU),

its storage system and its input-output system (I/O) (which is the

computer’s interface to the world). The HSA includes both the logical

design and the data flow organization of these subsystems, HSA

determines how efficiently the machine will operate.

A Classification of Computer Architecture:

1) Von Neumann Machines:

Von Neumann Machines meet the following criteria:

 It has three basic hardware subsystems:

 CPU

 Main Memory System

 I/O System

 It is a stored-program computer. The main memory system holds the

program that controls the computer’s operation and the computer can

manipulate its own program more or less as it can any other data in

memory.

 It carries out instruction sequentially. The CPU executes or at least

appears to execute one program at a time.

 It has or at least appears to have a single path between the main

memory system and the control unit of the CPU.

Computer Architecture 2

 Conventional Von Neumann Machines provide one pathway for

addresses and a second pathway for data & instruction.

 Harvard Architecture: is a class of VNM similar to conventional

computers except that they provide independent pathways for data

addresses, data, instruction addresses and instructions. Harvard

architectures allow the CPU to access instruction and data

simultaneously.

Von Neumann Machines

Conventional VNM Harvard Architecture

Main Memory System

Registers

PC
ALU

Control Unit

I/O System

address

pathway
data & inst.

pathway

Main Memory System

Registers

PC
ALU

Control Unit

I/O System

Instr.

address

pathway
Instr.

pathway
Data

address

pathway
Data

pathway

C
o
n

v
en

ti
o

n
a

l
V

N
M

H

a
rv

a
rd

 a
rc

h
it

ec
tu

re

Computer Architecture 3

The main parts of the CPU:

1-Control Unit: which controls the operation of the computer.

2-Arithmetic & Logic Unit (ALU): which performs arithmetic, logical

and shift operations to produce results.

3-Register Set: which holds various values during the computer’s

operations.

4-Program Counter (PC) (Instruction Pointer IP): which holds the

main memory address of an instruction.

2) Non Von Neumann Machines:

A) Single Instruction stream, Single Data stream (SISD)

The Von Neumann architecture belong to this classification. SISD

computers have one CPU that execute one instruction at a time &

fetch or stores one item of data at a time.

Hardware Software
Memory

CPU I/O Sys

System interconnection

ALU

Control

Unit Registers

Internal CPU interconnection

Computer

Memory

Control Operate
Instr

.
Data Result

Computer Architecture 4

B) Single Instruction stream, Multiple Data stream (SIMD)

SIMD machine have a CU that operates like a VNM (i.e. it executes a

single instruction stream). But have more than one PE (Processor

Element). The CU generates the control signals for all of the PEs,

which execute the same operation on different data items.

C) Multiple Instruction stream, Single Data stream (MISD)

Logically machines in this class would execute several different

programs on the same data item. There are currently no such

machines.

D) Multiple Instruction stream, Multiple Data stream (MIMD)

MIMD machine also called Multiprocessors. They are more than one

independent processor, and each processor can execute a different

program on its own data.

Memory System Architecture

The memory of a computer can be divided into three main groups:

1-Internal processor memory: This represent a small set of high-speed

registers used as working memory for temporary storage of instructions

and data.

2-Main memory (Also called Primary memory): This is a relatively

large fast memory used for program and data storage during computer

operation. It is characterized by the fact that locations in main memory

can be accessed directly and rapidly by the CPU instruction set.

Memory

Control
Instr

.

PE

Data Result

PE

Data Result

PE

Data Result

Memory

Control
Instr.

PE
Data Result

Control
Instr.

PE
Data Result

Control
Instr.

PE
Data Result

Computer Architecture 5

3-Secondary memory (Also called Auxiliary or Backing memory):
This is generally much large in capacity but also much slower than

main memory. It is used for storing system programs and large data

files. This type of memory has the following groups:

a- Magnetic tape b- Floppy disk

c- Hard disk d- CD-Rom (Compact Disk ROM)

Memory Device Characteristics:

Cost: Let C be the price in dollars of a complete memory system with S

bits of storage capacity. We define the cost c of the memory as

follows:

bit / dollars
S

C
c

Access time: The performance of a memory device is primarily

determined by the rate at which information can be read from or

written into the memory. A convenient performance measure is the

average time required to read a fixed amount of information, e.g.

one word from the memory. This is termed the read access time, or

more commonly, the access time of the memory and is denoted by

tA. (The write access time is defined similarity, it is typically, but

not always, equal to the read access time). Access time depends on

the physical characteristics of the storage medium, and also on the

type of access mechanism used. Access time usually calculated

from the time a read request is received by the memory unit to the

time at which all the requested information has been made

available at the memory output terminals.

Read Only Memory (ROM)

1-ROM

2-PROM (Programmable ROM)

3-EPROM (Erasable PROM)

4-EEPROM (Electrically EPROM)

1-ROM: Read Only Memory is a non volatile device that the CPU can

read but cannot write. Computers use them for holding constants that

specify the system’s configuration. Many ROMs are factory

programmed, and there is no way to alter their contents.

Computer Architecture 6

2-PROM: Field engineers can program this type of ROM memory by

using special high-current device to destroy (burn) fuses that were

manufactured into the devices. The result of burning a PROM is that

certain bits are always 0s and the rest are always 1s. These values

cannot be altered once written.

3-EPROM: This type of ROM can be erased by ultraviolet light and

reprogrammed many times. The components in the memory matrix of

the EPROM complex electronic devices, these devices act like diodes

that can be turned on or off by the presence or absence of minute

amounts of electrical charge.

4-EEPROM: It uses components that are some what similar to those in

the EPROM. However, the components in the EEPROM can be

disconnected (thus erasing the memory) electrically rather than by

exposure to ultraviolet light.

 Random Access Memories (RAM)

 RAMs are characterized by the fact that every location can be

accessed independently. The access and cycle times for every location are

constant and independent of its position. RAM is a memory device that

the CPU can read and write. Both the reading and writing are

accomplished through the use of electrical signals. RAM is a volatile

which mean that it lose their information content whenever the power to

the system is turned off. Thus RAM can be used only as temporary

storage.

 The figure below shows the main components of a RAM unit. The

storage cell unit comprises N cells, each of which can store 1 bit of

information.

 The memory operates as follow: The address of the required

location is transferred via the address bus to the memory address register,

the address is then processed by the address decoder which select the

required location in the storage cell unit. A read-write select control line

specifies the type of access to be performed. If read is requested, the

contents of the selected location is transferred to the output data register.

If write is requested, the word to be written is first placed in the memory

input data register and then transferred to the selected cell.

Computer Architecture 7

 The various drivers, decoder and control circuit are collectively

referred to as the access circuitry of the memory unit.

General Model of a RAM Cell

RAM Organization

 The access circuitry needed has a very significant effect on the

total cost of any memory unit. RAM is called matrix or array

organization. It has two essential features:

1-The storage cells are physically arranged as rectangular arrays of cells.

This is primarily to facilitate layout of the connections between the

cells and the access circuitry.

2-The memory address is partitioned into d components, so that the

address Ai of cell Ci becomes a d-dimensional vector

(Ai,1, Ai,2, …, Ai,d) = Ai. Each of the d parts of an address word goes to

a different address decoder and a different set of address drivers. A

Memory

Cell
Address

Lines
read-write

control lines

Data Lines

Address

Decoder
Storage

Cell

Unit

Timing and

Control

Circuit
 Address

Register

Address Bus

internal control

signal
Input

Data

Register
Output

Data

Register

Data Bus

Address Driver

Write

Driver
Read

Driver

Random Access Memory (Main Components of a RAM Unit)

Computer Architecture 8

particular cell is selected by simultaneously activating all d of its

address lines. A memory unit with this kind of addressing is said to be

a d-dimensional memory.

If d=1, called one-dimensional or 1-D memories. If the storage capacity

of the unit is N bits, the access circuitry typically contains one-

out-of N address decoder and N address drivers.

(One-dimensional addressing scheme)

e.g.: d=1, N=16, find number of drivers, address decoder, and number of

bits of address bus?

 N = 16,

 no of drivers = 16.

 address decoder = 0ne-out-of 16.

 N = 16 = 2
4
,

 no of bits in the address bus = 4.

If d=2, called two-dimensional (2-D) organization. The address field is

divided into two components called X and Y, which consist of ax

and ay bits respectively. The cells are arranged in a rectangular

array of xa
x 2N rows and ya

y 2N columns, so that the total no

of cells is yx NNN . The 2-D organization requires less

access circuitry than 1-D for a fixed amount of storage.

If NNN yx then,

The no of address drivers = N2 .

and two one-out-of N address decoders.

Address

Decoder

C0

C1

Cn-1

Storage cells

drivers

Address Bus

Computer Architecture 9

e.g.: if d=2, the address bus consist of 4 bits, find the type and number of

address decoders, no of rows, no of columns, no of drivers, no of

total cells?

since d = 2, address bus = 4 bits

 X = 2 bits, Y = 2 bits

 we need 2 one-out-of 4 decoders (1 for X, 1 for Y)

 no of rows 422 2aX

 no of columns 422 2aY

 N = NX*NY = 4*4 = 16 cells.

Semiconductor RAMs

 Semiconductor memories fall into two main categories, static and

dynamic.

Static RAMs (SRAM):

 These devices are composed of flip-flops that use a small current to

maintain their logic level. The contents of SRAM memory remain

unchanged for an indefinite period of time as long as the power is on.

SRAMs are used mostly for the CPU registers and other high speed

devices, although some computers use them for caches and main

memory. SRAMs are currently the fastest and most expensive of the

semiconductor memory circuits.

C0,0 C0,1 C0,2 C0,3

C1,0 C1,1 C1,2 C1,3

C2,0 C2,1 C2,2 C2,3

C3,0 C3,1 C3,2 C3,3

X
 a

d
d

re
ss

 d
ec

o
d

er

Y address decoder
Address

Bus (Two-dimensional addressing scheme)

Computer Architecture 10

Dynamic RAMs (DRAM):

 These devices are made with cells that store data as charge of

capacitors (a device for holding an electrical charge) together with a

single transistor. This pair of devices is smaller than the two or more

gates required for each flip-flop in an SRAM. The presence of a positive

charge on the capacitor (a positive voltage) can be interpreted as a one,

and its absence (zero voltage) as a zero. Unfortunately, the capacitors

slowly lose their charges due to leakage. So periodic charge refreshing is

necessary to maintain data storage. The refresh circuit must refresh the

charges about every 2ms.

 A semiconductor RAM IC typically has a word organized array

structure and contains all required access circuitry including address

decoders, drivers and control circuits. The figure below shows a simple

4*2-bits RAM:

Memory cell array

C0,0 C0,0

C1,0 C1,1

C2,0 C2,1

C3,0 C3,1

1/4

address

decoder

CE WE X0 X1 Z0 Z1 A0 A1
data output data input control lines address

Vb

Va
power

Structure of a 4*2-bit RAM

Computer Architecture 11

(Symbol for 4*2-bit RAM)

RAM design:

 A memory design problem that the computer architect may

encounter is the following: giving that certain m*n-bit RAM Ics denoted

Mm*n are available, design an m’*n’-bit RAM, where m’ m and/or

n’ n. a general approach is to construct a p*q array of the Mm*n modules

where p=m’/m and q=n’/n, when m’ m, additional external address

decoding circuitry may be required.

Ex: Design a 16*4-bit memory using 4*2-bit Ics?

sol:

 Mm*n = M4*2

 p = m’/m = 16/4 = 4 rows

 q = n’/n = 4/2 = 2 columns

 m’ = 16 = 2
4
 , no of address lines = 4, (A0, A1, A2, A3)

 m = 4 = 2
2
 , (A0, A1)

 m’ = 16 = 2
4
 , (A0, A1, A2, A3)

M4*2

CE WE

X0 X1

Z0

Z1

A0

A1

Control lines

Data input

Data

output
Address

lines

Computer Architecture 12

(A 16*4-bit RAM)

Example: The Intel 2186 64k-bit dynamic RAM

 This commercial RAM chip, which was introduced in 1983,

contains 64k one-transistor MOS (Metal Oxide Semiconductor) storage

cells of the kind shown figure below:

M4*2 M4*2

M4*2 M4*2

M4*2 M4*2

M4*2 M4*2

1/4

address

decoder

enable

A0

A1
A0

A1

A0

A1

A0

A1

A0

A1
A0

A1

A0

A1

A0

A1

CE

WE

X0

X1

X2

X3

Z0

Z1

Z2

Z3

A2

A3

address line

data line
T

C

Computer Architecture 13

Cache memory:

 A cache is a small fast memory placed between a processor and

main memory as illustrated in figure:

 The cache is then the fastest component in the memory hierarchy.

It can be viewed as a buffer memory for the main memory, so that the

cache M1 and main memory M2 form a two-level hierarchy. Caches are

used in various forms to reduce the effective time required by a processor

to access address, instruction or data that are normally stored in main

memory. The term cache is usually reserved for a general-purpose buffer

memory designed to store instruction or data associated with the

execution of all types of program.

 Sometimes a cache is used to store instruction but not data, in

which case the term instruction cache or instruction lookaside buffer are

used. The advantage of restricting a cache to instruction is that, unlike

data, instructions do not change, so the contents of an instruction cache

need never be written back to main memory.

 When a CPU demands a specific information (e.g. word), the CPU

first checks the cache for the existence of this word. If not, this means the

word exist in main memory, therefore, the main memory will transfer this

word to cache with the block of information nearest to this word.

CPU Cache Main memory

CPU Cache

Main memory

Block

Computer Architecture 14

Cache design:

 The performance goal of adding a cache memory to a computer is

to make the average memory access time tA seen by the processor as close

as possible to that of the cache tA1. to achieve this, a high percentage of

all memory references should be satisfied by the cache, i.e.: the cache hit

ratio should be close to 1. This is possible because of the

locality-of-reference property of program.

Hit: means the information are in cache.
Miss: means the information are in main.

0.9
Miss of no. Hits of no.

Hits of no.
 ratio Hit

Principle of locality-of-reference:

 Over any short period of execution time, the addresses and data

that the program need, are referenced in a specific area of main memory,

but the other area are discarded not demand.

 Loops, subprograms, subroutines and arrays are exact example of

locality-of-references. This principle increases the hit ratio. But JMP and

GOTO instructions decreases hit ratio because of the continuously block

replacement.

The structure of cache memory:

Cache

storage

access

logic

address

control
address

comparison
data

selection

data

routing

address

(Tag)
data page

(Line)

cache

storage

array

Main

memory
CPU

Physical

address

Data in
Data out

(Basic design of a Cache)

Computer Architecture 15

 It stores a set of main memory addresses Ai and the corresponding

data (words) M(Ai). The data entries are grouped into blocks, cache

pages, or called “lines”. Each of which is a subblock of some main

memory page, the corresponding stored address is therefore a block

address. The contents of the cache array are thus copies of a set of small

non-contiguous main memory blocks tagged with address.

The basic operation of cache:

 A physical address A is sent to the cache from the CPU at the start

of a read (load) or write (store) memory access cycle. The cache

compares the relevant part of A (address tag) to all the addresses it

currently stores. If there is a match i.e.: a cache hit, then the cache selects

the desired word M(A) from the data entry corresponding to A. It

completes the memory cycle by transferring data from the CPU to its

copy of M(A) (write operation) or else retrieving its copy of M(A) and

routing it to the CPU (read operation). If A fails to match any of the

stored addresses, i.e.: a cache miss, then the cache usually initiates a

sequence of one or more main memory read cycles to copy into the cache.

The main memory block P(A) containing the desired item M(A).

Performance of cache memory:

1)
mc

mmcc
s

SS

SCSC
C

Cs : average cost per byte of system (main + cache)

Cc : average cost per byte of cache.

Cm : average cost per byte of main.

Sc : size of cache.

Sm : size of main.

2) mcs T)H1(T*HT

Ts : system access time.

Tc : cache access time.

Tm : main access time.

H : hit ratio.

1-H : miss ratio.

CPU word block

cache

Main

memory

Mapping functions address

Computer Architecture 16

Ex: A computer with cache access time equal to 100ns, a main memory

access time equal to 1000ns, and the hit ratio equal to 0.9. Find the

average access time of memory?

Sol:
 mcs T)H1(T*HT

 = 0.9 * 100 + 0.1 * 1000

 = 90 + 100

 = 190 ns.

Mapping Functions:

 (mappingقوانين مهمة)مثال يدتخدم لذرح الـ

block of size

main of size
 main in blocks of .no

block of size

cache of size
 cachein (lines) slots of .no

Ex: Suppose cache size = 1 Kbyte, data is to be transferred between main

and cache in block of 8 bytes, main memory size = 64 Kbyte. Find

no. of blocks in main, no. of slots in cache?

Sol:

 Kblocks 82
2

22

byte 8

kbyte 64

S

S
mainin blocks of no. 13

3

610

block

main

 slots 1282
2

2

byte 8

kbyte 1

S

S
cachein slots of no. 7

3

10

block

cache

1 >> Associative Mapping:

 A main memory block can be loaded (mapped) in any slot in the

cache. Therefore, block0 can be mapped in slot0 or slot1 or any other slot

in the cache. According to the example:

Cache 1 Kb Main 64 Kb

Slot0 Block0

Slot1 Block1

:

:
:

:
Slot 127

 Block 8191

Main memory address = 13 3 ,

 tag (block addr. in main) word

Computer Architecture 17

The main memory address in this method will be in two parts, and

according to the example, main memory address consists of 16 bits

(64 Kb), and the block (8 bytes) can represent it by 3 bits, therefore the

tag will be represented by 13 bits.

The CPU sends an address for a word to the cache, the tag part of

main memory address will be compared to all tags in cache (no specified

slot for specified block), if there is a match, then the word part will be

picked up from the words part in block. If there is no match, then by the

tag part the CPU will fetch the specified block from the main memory.

2 >> Direct Mapping:

 Allows each block of main memory only one possible cache slot by

using:

S = A modulo C

where : S = cache Slot no.

 A = main memory Address (main memory no).

 C = total no of slots in Cache.

According to the example:

Block 0 S = 0 modulo 128 S = 0

Block 1 S = 1 modulo 128 S = 1

Block 127 S = 127 modulo 128 S = 127

 :

Block 128 S = 128 modulo 128 S = 0

Block 129 S = 129 modulo 128 S = 1

Therefore,

Blocks 0, 128, 256, 384, ……… mapping on slot 0

Blocks 1, 129, 257, 385, ……… mapping on slot 1

:

Blocks 127, 255, …, 8191 …… mapping on slot 127

Slot 0 Block 0

Slot 1 Block 1

:

:

 :

:

 Block 127

 Block 128

Slot 127 Block 129

 :

:

 Block 8191

Computer Architecture 18

Cache address = tag slot word ,

 The slot part will be index on cache to determine the desired slot,

128 slots = 2
7
 7-bits address lines

 The word part determines which desired word in block,

8 bytes = 2
3
 3-bits address lines

 The tag part preferences which block in the current slot, 7-bits for

slots address lines, 3-bits for word address lines, then 6-bits for tag

part, or by using this formula:

6

7

13

2
2

2

128

Kb 8

cachein block of no

main in block of no

cacheblock each in

mappedcan that blocks of no.

Cache address = 6 7 3 ,

 tag slot word

 The CPU sends 16-bits address to the cache, first compare the slot

part to determine the block, second compare the tag part of the address

with the tag part in cache to determine which block is in cache now, if

match, this means the desired block exists (hit), then the desired word

will be specified by the word part. If not match (miss), then the slot part

and the tag part will merge to form the desired block address (13-bits) to

get the block from main memory to cache.

3 >> Set Associative Mapping:

 The cache is divided into I sets, each set consists of J slots, we

have:

C = I J

K = A modulo I

C : total no. of slots in cache.

I : no. of the sets in cache.

J : no. of slots in each set.

K : cache set no.

A : block address (block no. coming from main memory)

 With this algorithm, the block containing address A can be mapped

into any slot in set I. if I = C, J = 1, the set associative technique reduces

the direct mapping, and for I =1, J = C, it reduces to associative mapping.

 For example, if the no. of slots = 2 in each set, then the no. of set

is: 128 / 2 = 64 sets in cache.

 Any coming block from main memory will be mapped into any 1

of 2 slots in the specified set. The set will be specified by using:

K = A modulo I

Computer Architecture 19

Block 0 K = 0 modulo 64 K = 0

Block 1 K = 1 modulo 64 K = 1

Block 63 K = 63 modulo 64 K = 127

Block 64 K = 64 modulo 64 K = 0

Therefore,

Blocks 0, 64, 128, 192, ………… mapping on set 0

Blocks 1, 65, 129, 193, ………… mapping on set 1

:

Blocks 63, 127, 191, …, 8191 … mapping on set 63

Cache address = tag set word ,

 The word part, as previous,

8 bytes 3-bits address lines.

 The set part calculated as:

64 sets = 2
6
 sets 6-bits address lines.

 The tag part preferences which block in the current slot, 6-bits for

the set address lines, 3-bits for word address lines, then 7-bits for tag

part, or by using this formula:

7

6

13

2
2

2

64

Kb 8

cachein set of no

main in block of no

seteach in mapped

can that blocks of no.

Cache address = 7 6 3 ,

 tag set word

Note: The hit ratio in the set associative mapping is larger than the direct

mapping but less from the associative mapping.

 Block 0

 Block 1

 :

:

:
 Block 63

 Block 64

 Block 65

 :

:

 Block 8191

Set 0

Set 1

Set 63

Computer Architecture 20

Replacement Algorithm:

 When a new block is brought into the cache, one of the existing

blocks must be replaced.

 For direct mapping, there is one possible slot for any given block

and no decision is needed.

 For the associative & set associative mapping, a replacement

algorithm is needed.

Replacement Types (Algorithms):

1) First – In – First – Out (FIFO)

Replace that block in the set which has been in the cache longest.

2) Least Frequently Used (LFU)

Replace that block in the set which has experienced the fewest

references.

3) Least Recently Used (LRU)

Replace that block in the set which has been in the cache longest with

no reference to it.

Write Policy:

1) Write Through:

All writes operations are made to main memory as well as to the

cache, ensuring that the main memory is always valid. The main

disadvantage of this technique is that there is an unnecessarily high

rate of memory writes.

2) Write Back (CopyBack)

Minimizes memory writes with write back, updates are made in the

cache. When an update occurs, an update-bit associated with the slot is

set (update-bit = 1). Then, when a block is replaced, it is written back

to main memory if and only if the UPDATE-bit is set. It has the

disadvantage that M1 and M2 can be inconsistent, i.e. have different

data associated with the same physical address. This inconsistent

found when more than one CPU work on the same main memory.

Computer Architecture 21

Virtual Memory:

 The operating system is used to produce the illusion of an

extremely large memory. Since this large memory an illusion, it is called

Virtual Memory. In virtual memory systems, the operating system loads

only part of a program, the currently active part in main memory.

 Virtual memory is used in large computer systems which allow the

user to store large amount of data and programs in the secondary

memory. Every address (virtual address) goes out of the CPU, passes

through process steps to transform the virtual address to a physical

address in the main memory.

 If we have a big application program larger than the main memory

size, then by using the virtual memory concept we can load this

application to the main memory and then execute it. Where the active

parts of the program will be loaded from the secondary memory to the

main memory and will be executed by the CPU as dependent programs.

This will achieved by the OS (operating system), where one of the OS

responsibility is to manage the memory by controlling the memory and

the data transmittance.

 Virtual memory systems generally use one or both of two

techniques for mapping effective addresses (CPU addresses) into physical

addresses: paging and segmentation.

Ex:

 Auxiliary memory Main memory

 1M=1024K 32K

Program 1

Data 1,1

Data 1,2 Program 1

:

:

:

Program 2 Data 1,1

Data 2,1

Virtual

address Physical

address

no of location (address space) = 1M = 2
20

no of location (memory space) = 32K = 2
15

Computer Architecture 22

From the figure above, we see that the secondary memory is larger

32 times than the main memory.

In this example, the CPU will issue the instruction & data

addresses with length of 20-bits, but these instruction and data are

currently exist in main memory (remember that the desired application

and data to be executed had already transmitted from auxiliary memory to

the main memory).

Therefore, we need such a table to convert the virtual addresses

(with length 20-bits) to physical addresses (with length 15-bits). This

process achieved dynamically, meaning that every address issued by the

CPU will be converted directly and automatically to a physical address.

CPU Virtual address Memory

mapping

table

Physical

address Main

memory

Data
Data

bus

to

CPU (20-bits)
Address bus

from CPU
(15-bits)

Paging:

 Is a hardware-oriented technique for managing physical memory.

Architects introduced paging so that large programs could run on

computers with small physical memories. In essence, the computer loads

into main memory only those parts of the program that it currently needs

for execution. The remainder of the program resides in external storage

until needed.

 In paging system, the virtual memory hardware divides logical

addresses into two parts: a page number and a word offset within the

page. The hardware makes this division by partitioning the bits of the

address to the following: the high order bits are the page number and the

low order bits are the word offset.

The units of physical memory that hold pages are called page-

frame (or sometimes called blocks).

Computer Architecture 23

 The page table in the main memory consist of many entries equal

to the number of the existence pages. Each entry gives the specifications

of a specific page, these specifications are:

1- V: (Valid) used to determine whether the desired page exist now in the

main memory or not. If V=1 means that the page of this entry exist

now in the main memory, but if V=0 means that this page is not in the

main memory but it is now still exist in the second memory.

2- D: (Dirty) used to determine whether the page of this entry has been

changed or not. If D=0 means the page has not been changed, but if

D=1 means that the contents of this page has been changed, then the

system will make a copy of this page to the secondary memory.

3- Protection: used for page protection, and consist of 2-bits, this

protection include the protection for the instruction page from any

change (write), and as follow:

Virtual

Page no.
Byte

offset
Page table

base address

Virtual

Page no. V D

Effective address
Page table

base register

Prote-

ction
Page-frame

no.

Control logic

Page-frame no. Byte offset
Physical address

TLB

V D Prote-

ction
Page-frame

no.

Operand

Page table in memory

(Components of a Paging System)

Computer Architecture 24

Protection Meaning

0 0 The page is for instruction only

0 1 The page is for read only

1 0 The page is for read and write

1 1 Nothing

4- Page frame no.: hold the number of the page determined by this entry

in the main memory.

Note: from the figure, we see the hardware part, that is, the page table

base register, which provides the beginning address of the page table

in the main memory.

TLB (Translation Lookaside Buffer)

 A small cache, some hardware systems maintain it as part of the

page map (memory map). TLB holds essentially the same information as

part of the page table. In general, a TLB holds entries only for the most

recently accessed pages and only for valid pages, that is, pages that have

an image in main memory (exact copies of the data).

 For a paging system, whenever the CPU generates an effective

address, the CPU sends it to the TLB, which produces the page-frame no.

if it holds an entry for the page. If the TLB has no entry, the hardware

consults the page table in main memory by using the page no. as an offset

into the page table.

 If the validity bit (V=1) indicates the page is in main memory, the

hardware uses the page frame no. to access the memory and

simultaneously copies the page table entry into the TLB. Otherwise, the

hardware initiates a trap (interrupt) called a page fault, at which point the

OS intervenes to load the demanded page in memory and updates the

page table.

 The number of entries in the page table is not fix, because it

depends on the: 1-size of the applied program, 2-size of a single page. For

example, if the size of the applied program is 20KB, and the size of the

page is 4KB, then the number of pages used by this program is 5 pages.

So, the number of the entries for this application in 5 entries, each of

which contains the specifications of a single page.

 The advantage of TLB is to speed up the system. If the TLB is not

there, then the CPU reference to the main memory will be twice, once for

searching the page entry inside the page table in the main memory, and

second to access the data inside the page in the main memory after

Computer Architecture 25

creating the physical address. While by the existence of the TLB, the

CPU will reference the main memory once to access the data there, when

the demanded entry is exists in TLB.

Page Thrashing:

 The state of excessively moving pages between memory and

secondary storage. So the CPU spends most of it’s time swapping pages

rather than executing instructions.

 For all types of paging systems, whenever a page fault occurs, the

OS must decide in which page frame to put the demanded page. The OS

will choose an empty page frame wherever possible. However, if all the

page frames are occupied, the OS must delete an existing page to make

room for the new page. OS use several different policies to do so.

Page Replacement Policies:

1- FIFO: The first page came to the main memory, the first page goes out

of it (the oldest page has been loaded, the first page goes out).

2- LRU: The fewest reference page goes out.

Ex: Suppose the memory space has 3 pages, and the referenced page is:

4,2,3,4,5,1,4. Show the replacement policies using FIFO & LRU?

 4 2 3 4 5 1 4

FIFO:

4* 4* 4* 4* 5 5 5*

 2 2 2 2* 1 1

 3 3 3 3* 4

 Hit

 4 2 3 4 5 1 4

LRU:

4* 4* 4* 4 4 4* 4

 2 2 2* 5 5 5*

 3 3 3* 1 1

 Hit Hit

Computer Architecture 26

Ex: An address space is specified by 24 bits and the corresponding

memory space by 16 bits. Find:

a) How many words are there in the address space?

b) How many words are there in the memory space?

c) If a page consists of 2K words, how many pages are there

in the system?

Sol:

a) no. of words in address space = 2
24

 = 2
4
2

20
 = 16 M words.

b) no. of words in memory space = 2
16

 = 2
6
2

10
 = 64 K words.

c) no. of pages =
pageeach in wordsof no

space addressin wordsof no

 8192K822
22

22 103

101

204

Segmentation:

 Like paging, segmentation is a virtual memory technique.

Segmentation differs from paging in a number of ways: Instead of

dividing logical addresses into pages of a fixed size and main memory

into fixed size page frames. The hardware divides logical addresses into

segments of arbitrary size, and the processor treats main memory as a

single block.

 Segments that contains only procedure code are called (Code

Segment), and those with only data are called (Data Segment). Segment

tend to be much larger than pages (frequently as large as 64KB).

Moreover, segments can usually range in size, where pages are

always in one size. For a given system-segment sizes are chosen to reflect

the sizes of the corresponding code or data they contain.

 The size of the segments determined by the OS, or by the user if

the user use the assembly language to expand the size of the segments.

The protection of data using the segmentation technique is better

than the protection using paging technique.

Computer Architecture 27

Size: holds the size of the segment.

 The physical address in paging technique found by binding the

byte offset with page frame. But in segmentation technique, the physical

address found by gathering the byte offset with segment address.

Segmentation with Paging:

 Paging and segmentation can be combined in an attempt to give the

advantages of both. This is done, by dividing each segment into pages.

The memory map consists of segment table and set of page tables, one of

each segment address is a pointer to the base of the corresponding page

table. The page table is used in the usual way to determine the required

physical address.

Segment

number
Byte

offset
Seg. table

base address

Virtual

Seg. no. V Size D

Effective address
Segment table

base register

Prote-

ction
Seg. base

address

Control logic

Physical Address

TLB

V Size D Prote-

ction
Seg. base

address

Operand

Segment table in memory

+

Main Memory

(Components of Segmentation System)

Computer Architecture 28

 The greater advantage of breaking a segment into pages is that:

elimination the need to store the segments in contiguous region of main

memory.

 In brief, the program is divided into segments, and the system will

deal with each segment as a separate program, so, each segment need to

be divided into many pages. Therefore, it will need a one single segment

table with many page tables.

Program Segment 0 Memory

Segment 0 Page 0 Page 0

Segment 1 Page 1 :

: : Page n

: Page n :

: Page 1

CPU

Segment Page Word

+

block Word

Logical Address

Segment table Page table

Physical Address
(Logical to Physical address mapping)

Computer Architecture 29

Ex: Suppose logical address length =20 bits, divided into the following:

segment field =4 bits, page field =8 bits, word field =8 bits, find:

1) Total segments?

2) Total pages in each segment?

3) Total words in each page?

4) Number of words in the smallest segment size?

5) Number of words in the largest segment size?

6) Number of blocks in main memory?

Sol:

Segment Page Word

4 8 8

12 Block 8

1) Total segments = 2
4
 16 segment.

0 segment number 15

2) Total pages in each segment = 2
8
 = 256 pages

0 page number 255

3) Total words in each page = 2
8
 = 256 words

0 word number 255

4) Smallest segment will have 1 page,

 one page consists of 2
8
 = 256 words.

5) Largest segment will have 2
8
 (256) pages,

 2
8
 pages 2

8
 words = 2

16
 words = 2

6
 2

10
 = 64 Kwords.

6) No. of blocks in main = 2
12

 = 4 K block in main memory.

Ex: The logical address space in a computer consists of 256 segments.

Each segment can have up to 64 pages of 1K words.

a) Formulate the logical address format?

b) Give the binary representation of the logical address format for

segment 20 and word number 16 in page 15?

Sol:

No. of segment = 256 = 2
8
 8 bits of segment field.

No. of pages = 64 = 2
6
 6 bits of page field.

No. of words = 1K = 2
10

 10 bits of word field.

a)

 Segment Page Word

Logical Address 8 6 10

b)

Segment Page Word
0 0 0 1 0 1 0 0 0 0 1 1 1 1 0 0 0 0 0 1 0 0 0 0

Computer Architecture 30

Direct Memory Access (DMA)

 The transfer of data between a fast storage device such as magnetic

disk and memory is often limited by the speed of the CPU. Removing the

CPU from the path and letting the peripheral device manage the memory

buses directly would improve the speed of the transfer. This transfer

technique is called direct memory access (DMA).

 During DMA transfer, the CPU is idle and has no control of the

memory buses. A DMA controller takes over the buses to manage the

transfer directly between the I/O device and memory.

 DMA circuits are used to increase the speed of I/O operations and

eliminate most of the role played by the CPU in such operations. Special

control line to which we assign the generic names DMA REQUEST go

from the I/O devices to the CPU.

(DMA breakpoint during an instruction cycle)

This figure shows a typical sequence of CPU actions during an

instruction cycle. Thus, during the instruction cycle, there are five points

in time (breakpoints) when the CPU can respond to a DMA request.

When the CPU receives such a request, it waits until the next breakpoint,

releases the system bus, and signals the requesting I/O device by

activating a DMA ACKNOWLEDGE control line.

CPU

cycle
Fetch

instruction
Decode

instruction
Fetch

operand
Execute

instruction
Store

result

DMA

breakpoint
Interrupt

breakpoint

Instruction Cycle

Computer Architecture 31

Essential Parts of DMA Controller

1) IODR (IO Data Register): contains the data that will be transferred

from main memory to the IO device or from IO device to the main

memory.

2) IOAR (IO Address Register): contains the address of the data to be

transferred. This register is incremented after each word that is

transferred to memory.

3) DC (Data Count) (Word Count Register): holds the number of words

to be transferred. This register is decremented by one after each word

transfer and internally tested for zero.

4) Control Unit: controls the DMA controller, and specifies the mode of

transfer.

Types of DMA

 When the DMA takes control of the bus system, it communicates

directly with the memory. The transfer can be made in several ways:

1) (Burst Transfer) Block Transfer

 In DMA burst transfer, a block sequence consisting of a number of

memory words is transferred in a continuous burst while the DMA

controller is master of the memory buses. This mode of transfer is needed

AR AC

IR Control

unit

CPU

DC IOAR IODR

Control

unit

DMA controller

address

data

DMA request
DMA acknowledge

IO device

System

bus

(Circuitry required for DMA)

Computer Architecture 32

for fast devices where data transmission cannot be stopped or slowed

down until an entire block is transferred.

2) Cycle Stealing

 Allows the DMA controller to transfer one data word at a time,

after which it must return control of the buses to the CPU. This means

that long blocks of IO data are transferred by a sequence of DMA bus

transactions interspersed اجراا نثررا(with CPU bus transactions. The CPU

merely delays its operation for one memory cycle to allow the direct

memory I/O transfer to “steal” one memory cycle.

3) Transparent DMA

 Designing the DMA interface so that bus cycles are stolen only

when the CPU is not actually using the system bus.

DMA Transfer

1) The CPU executes two IO instructions, which load the DMA register

IOAR with the base address of the main memory region to be used in

the data transfer and DC register with the number of words to be

transferred.

2) When the DMA controller is ready to transmit or receive data, it

activates the DMA REQUEST line to the CPU, the CPU wait for the

next DMA breakpoint. It then relinquishes control of the data and

address lines (system bus) and activates the DMA

ACKNOWLEDGE.

3) The DMA controller now transfers data directly to or from main

memory. After a word is transferred, IOAR incremented and DC

decremented.

4) If DC is not decremented to zero but the IO device is not ready to send

or receive the next batch of data, the DMA controller returns control

to the CPU by releasing the system bus and deactivating the DMA

REQUEST line. The CPU responds by deactivating DMA

ACKNOWLEDGE and resuming normal operation.

5) If DC is decremented to zero, the DMA controller again relinquishes

control of the system bus. It may also send an interrupt signal to the

CPU. The CPU responds by halting the IO device by initiating a new

DMA transfer.

Computer Architecture 33

CPU

 The things that the CPU must do:

1- Fetch Instruction: The CPU must read instruction from memory.

2- Interpret Instruction: The instruction must be decoded to determine

what action is required.

3- Fetch Data: The execution of an instruction may require reading data

from memory or an I/O module.

4- Process Data: The execution of an instruction may require performing

arithmetic or logical operation on data.

5- Write Data: The result of an execution may require writing data to

memory or I/O module.

The major components of CPU are:

1- ALU.

2- Registers.

3- Control Unit.

(CPU with the system bus)

Registers

Control

Unit
ALU

CPU

Control

Bus
Data

Bus
Address

Bus

Computer Architecture 34

(Internal Structure of the CPU)

Register Organization

The registers in the CPU save two functions:

1- User Visible Register:

To enable the machine or assembly language programmer to

minimize main memory references by optimizing use of registers. We

can characterize these registers in the following categories:

 General purpose.

 Data.

 Address (i.e.: segment register)

 Condition codes (i.e.: flag register)

2- Control and Status Registers:

These are used by the control unit to control the operations of the

CPU and the execution of program.

Four registers are essential to instruction execution:

 Program Counter (PC): Contains the address of an instruction to be

fetched.

 Instruction Register (IR): Contains the instruction most recently

fetched.

 Memory Address Register (MAR): Contains the address of a

location in memory.

Status Flag
Shifter

Complement

Arithmetic and

boolean logic

CPU
ALU

In
te

rn
al

 C
P

U
 B

u
s

Registers

Control

Unit

Control Paths

Computer Architecture 35

 Memory Buffer/Data Register (MBR) (MDR): Contains a word of

data to be written to memory or the word most recently read.

Control Unit

 The purpose of the control unit is to issue control signals or

instruction to the data processing part. These control signals select the

function to be performed at specific times and rout the data through the

appropriate functional units.

Implementation Methods

1- Hardwired Control.

2- Microprogrammed Control.

1)) Hardwired Control

 This implementation views the control unit as a sequential logic

circuits to generate specific fixed sequence of control signals. Once

constructed change in behaviour can be implemented only by

redesigning, and physically rewiring the unit.

 For designing such an implementation, the designers take the

instruction set and designing the hardwired part for each instruction under

consideration of all possibilities of each instruction, then they build the

boolean algebra functions which represent the output of logical gates.

These output represent the control signals. Meaning that each control

signal generated by logical circuits for one specific instruction.

 This type of implementation used in RISC computers (Reduce

Instruction Set Computer). And because of constructing this unit from

many logical gates, it guarantees speed for such unit, but also it increases

the heat of this unit and consequently increases the heat of the CPU,

therefore, a fan is needed for cooling the CPU.

MAR MBR ن

Memory

Address

Bus
Data

Bus

read
write

Computer Architecture 36

2)) Microprogrammed Control

 It is a method of control design, which the control signal selection

and sequencing information is stored in control memory (CM), which

stored in the control unit in the CPU.

The control signals to be activated at any time by a

microinstruction. This microinstruction is fetched from the CM in much

the same way an instruction is fetched from main memory.

 The CM containing the microinstructions that are generates the

control signals. For executing such a microinstruction, it must fetch this

microinstruction from the CM, then decoding it, then executing it.

Therefore, the microinstruction consists of many bits, each of represent a

microoperation. Each bit controls one control line, if this bit is 0, it means

this line is inactivated, if this bit is 1, it means this line is activated.

 Any change in behaviour of an instruction, it needs to change the

values of the bits inside the CM form 0 to 1 or from 1 to 0. Thus, this

method is easy and quick and more flexible if need a change, but it is

slower than the hardwired in execution.

Microprogram:

The sequence of microinstructions that represent a single machine

instruction.

Microinstruction:

The set of microorders issued by the control unit at one a time.

Microorders (Microoperation):

Individual signals sent over dedicated lines to control individual

components and devices.

PC MAR
Control line

Computer Architecture 37

Ex: Explain the microinstruction for the instruction (ADD C), where the

number of the control lines of the system is equal to 7 and illustrated

in this figure:

0000001

0000010

1001000

CCCCCCC

Aadder -3

adder active -2

AdderC ,Adder A -1

 C Add

1234567

D
C
B
A

ن3

ن2

ن5
ن4

ن7
ن6

ن1

ADDER
Active adder

instruction
Microprogram in

symbolic form
microinstruction

microorder
Binary

Representation

Computer Architecture 38

 Let us assume that each instruction occupies one memory word.

Therefore, execution of one instruction requires the following three steps

to be performed by the CPU:

1- Fetch the contents of the memory location pointed at by the PC. The

contents of this location are interpreted as an instruction to be

executed. Hence, they are stored in the instruction register (IR).

Symbolically, this can be written as:

IR [[PC]]

2- Increment the contents of the PC by 1.

PC [PC] + 1

3- Carry out the actions specified by the instruction stored in the IR.

 Steps 1 and 2 can be repeated as many times as necessary to fetch

the complete instruction. These two steps are usually referred to as the

fetch phase, while step 3 constitutes the execution phase.

 The figure below shows the arithmetic and logic unit (ALU) and all

CPU registers are connected via a single common bus. This bus is

internal to the CPU, and should not be confused with the external bus, or

buses connecting the CPU to the memory and I/O devices. The external

memory bus is connected to the CPU via the memory data and address

registers MDR and MAR. the number and function of registers R0 to

R(n-1) vary from one machine to another. They may be provided for

general-purpose used by the programmer, some of them may be dedicated

as special-purpose registers, such as index registers or stack pointers.

 The registers Y and Z used only by the CPU for temporary storage

during execution of some instructions. However, they are never used for

storing data generated by one instruction.

 Most of the operations in steps 1 to 3 can be carried out by

performing one or more of the following functions in some pre-specified

sequence:

1- Fetch the contents of a given memory location and load them into a

CPU register.

2- Store a word of data from a CPU register into a given memory

location.

3- Transfer a word of data from one CPU register to another or to the

ALU.

4- Perform an arithmetic or logic operation, and store the result in a CPU

register.

 Let us now consider in some detail the way in which each of the

above functions is implemented in a typical computer.

Computer Architecture 39

Operand address

and

instruction decoder

IR

PC

MAR

MDR

R0

R(n-1)

Y

Z

A B

ALU

Internal

CPU bus

Address lines

Data lines

Memory

bus

External

bus

Figure 1: (Single-bus organization of the data paths inside the CPU)

Computer Architecture 40

1) Fetching a word from memory (Read Fetch):

 To fetch a word of information from memory, the CPU has to

specify the address of the memory location where this information is

stored and request a READ operation. This applies whether the

information to be fetched represents a new instruction in a program or a

word of data (operand) specified by an instruction.

 Thus, to perform a memory fetch, the CPU transfers the address of

the required information word to the memory address register (MAR).

Then this address is transferred to the main memory. Meanwhile, the

CPU uses the control lines of the memory bus to indicate that a READ

operation is required. Then, the CPU waits until it receives an answer

from the memory, informing it that the requested function has been

completed, this is accomplished through the use of another control signal

on the memory bus, which will be referred to as memory-function-

completed (MFC).

 As soon as the MFC signal is set to 1, the information on the data

lines is loaded into MDR and is thus available for use inside the CPU.

 As an example, assume that the address of the memory location to

be accessed is in register R1 and that the memory data is to be loaded into

register R2. This is achieved by the following sequence of operation:

1. MAR [R1]

2. READ

3. Wait for the MFC signal

4. R2 [MDR]

The duration of step 3 depends upon the speed of the memory used.

The functions that do not require the use of MDR or MAR can be carried

out during the MFC. Such a situation arises during the fetch phase, that is

the PC can be incremented while waiting for the Read operation to be

completed.

The transfer mechanism where one device initiates the transfer

(READ request) and wait until the other device responds (MFC signal) is

referred to as an asynchronous transfer. It can be easily seen that this

mechanism enable transfer of data between two independent devices that

have different speeds of operation. An alternative scheme that can be

found in some computers uses synchronous transfers.

Computer Architecture 41

2) Storing a Word into Memory (Write):

 The data word to be written should be loaded into the MDR before

the WRITE command is issued. Assume that the data word to be stored in

the memory is in R2 and that the memory address is in R1, the WRITE

operation requires the following sequence:

1. MAR [R1]

2. MDR [R2]

3. WRITE

4. Wait for MFC

Steps 1 and 2 are independent. Therefore, they can be carried out in

any order. In fact, steps 1 and 2 can be carried out simultaneously, this

would not be possible in the single-bus organization.

3) Register Transfers:

 The input and output gates for register Ri are controlled by the

signals Riin and Riout , respectively. Thus, when Riin is set to 1, the data

available on the common bus is loaded into Ri. Similary, when Riout is set

to 1, the contents of register Ri are placed on the bus. While Riout is equal

to 0, the bus can be used for transferring data from other registers.

 For example, to transfer the contents of register R1 to register R4,

the following actions are needed:

 Enable the output gate of register R1 by setting R1out to 1. This

places the contents of R1 on the CPU bus.

 Enable the input gate register R4 by setting R4in to 1. This loads

data from the CPU bus into register R4.

This data transfer can be represented symbolically as

R1out , R4in

Computer Architecture 42

Figure 2: (input and output gating for the registers in Figure 1)

R(n-1)

Y

Z

A B

ALU

R(n-1)in

R(n-1)out

Yin

Zin

Zout

Yout

Computer Architecture 43

4) Performing an Arithmetic or Logic Operation:

 The two numbers to be added should be made available at the two

inputs of the ALU simultaneously. Register Y in figure 1, is provided for

this purpose. It is used to hold one of the two numbers while the other

number is gated to the bus. The result is stored temporarily in register Z.

therefore, the sequence of operations to add the contents of register R1 to

register R2 and store the result in register R3 should be as follows:

Step Action

1. R1out , Yin

2. R2out , Add , Zin

3. Zout , R3in

 In step 2 of this sequence the contents of register R2 are gated to

the bus, hence to input B of the ALU which is connected directly to the

bus. The contents of register Y are always available at input A. the

performed by the ALU depends upon the signal applied to the ALU

control lines. In this case, the ADD line is set to 1, causing the output of

the ALU to be the sum of the two numbers at A and B. this sum is loaded

into register Z, since its input gate is enabled (Zin). in step 3, the contents

of register Z are transferred to the destination register R3.

Multibus Organization:

 The single-bus organization of figure 1 represents only one of the

possibilities for interconnecting different building blocks of the CPU. An

alternative arrangement is the two-bus structure shown in figure 3. All

register outputs are connected to bus A, and all register inputs are

connected to bus B. The two buses are connected through the bus tie G,

which, when enabled, transfers the data on bus A to bus B. When G is

disabled, the two buses are electrically isolated. Note that the temporary

storage register Z in figure 1 is not required in this organization because,

with the bus tie disabled, the output of the ALU can be transferred

directly to the destination register. For example, the addition operation

(R3 [R1] + [R2]) can now be performed as follows:

Step Action

1. R1out , Genable , Yin

2. R2out , Add , ALUout , R3in

Computer Architecture 44

 Figure 3: (Multi-bus organization of the data paths inside the CPU)

Operand address

and

instruction decoder

IR

PC

MAR

MDR

R0

R(n-1)

Y

A B

ALU

Address lines

Data lines

Bus tie

G

Memory

bus

Computer Architecture 45

Execution Of A Complete Instruction

 Let us now try to put together the sequence of elementary

operations required to execute one instruction. Consider the instruction

“Add contents of memory location NUM to register R1”.

ADD R1 , [NUM]

 Figure 4 gives the sequence of control steps required to implement

the above operations for the single-bus architecture of figure 1. Thus,

instruction execution proceeds as follows:

Step Action

1. PCout , MARin , Read , Clear Y , Set carry-in to ALU , Add , Zin

2. Zout , PCin , Wait for MFC

3. MDRout , IRin

4. Address-field-of-IRout , MARin , Read

5. R1out , Yin , Wait for MFC

6. MDRout , Add , Zin

7. Zout , R1in

8. End

Figure 4: “Add contents of memory location to register R1”

 In step 1, the instruction fetch operation is initiated by loading the

contents of the PC into the MAR and sending a Read request to the

memory. At the same time the PC is incremented by 1 through the use of

the ALU. This is accomplished by setting one of the inputs to the ALU

(register Y) to 0 and by setting the other input (CPU bus) to the current

value in PC. At the same time the carry-in to the ALU is set to 1 and an

Add operation is specified. The updated value is moved from register Z

back into the PC during step 2. Note that step 2 is started immediately

after issuing the memory Read request without the need to wait for MFC.

Step 3, however, has to be delayed until the MFC is received. In step 3,

the word fetch from the memory is loaded into the IR. Step 1 through 3

constitutethe instruction fetch phase of the control sequence. Of course,

this portion is the same for all instructions.

 Steps 4 to 8, which can be referred to as the execution phase. In

step 4, the address field of the IR, which contains the address NUM, is

gated to the MAR, and a memory Read operation is initiated. Then the

contents of R1 are transferred to register Y. when the Read operation is

completed, the memory operand is available in register MDR. The

addition operation is performed in step 6, and the result is transferred to

R1 in step 7. The End signal, step 8, indicates completion of execution of

the current instruction and usually causes a new fetch cycle to be started

by going back to step 1.

Computer Architecture 46

EXAMPLES:

EXG R1 , R2

Step Action

1. PCout , MARin , Read , Clear Y , Set carry-in to ALU , Add , Zin

2. Zout , PCin , Wait for MFC

3. MDRout , IRin

4. R1out , Yin

5. R2out , R1in

6. Yout , R2in

7. End

CLEAR R1

Step Action

1. PCout , MARin , Read , Clear Y , Set carry-in to ALU , Add , Zin

2. Zout , PCin , Wait for MFC

3. MDRout , IRin

4. Clear Y , Yout , R1in

5. End

INC [NUM]

Step Action

1. PCout , MARin , Read , Clear Y , Set carry-in to ALU , Add , Zin

2. Zout , PCin , Wait for MFC

3. MDRout , IRin

4. MDRout, MARin , Read

5. Wait for MFC

6. MDRout , Clear Y , Set Carry , Add , Zin

7. Zout , MDRin , Write

8. Wait for MFC

9. End

RETURN

Step Action

1. PCout , MARin , Read , Clear Y , Set carry-in to ALU , Add , Zin

2. Zout , PCin , Wait for MFC

3. MDRout , IRin

4. SPout , MARin , Read , Clear Y , Set Carry , Add , Zin

5. Zout , SPin , Wait for MFC

6. MDRout , PCin

7. End

Computer Architecture 47

Branching

 Branching is accomplished by replacing the current contents of the

PC by the branch address, that is, the address of the instruction to which

branching is required. The branch address is usually obtained by adding

an offset X, which is given in the address field of the branch instruction

to the current value of the PC.

 Figure 5 gives a control sequence that enables execution of an

unconditional branch using the single-bus organization of figure 1.

Execution starts as usual with the fetch phase until the instruction is

loaded into the IR in step 3. To execute the branch instruction, the

contents of the PC are transferred to register Y in step 4. Then, the offset

X is gated to the bus, and the addition operation is performed. The result,

which represents the branch address, is loaded into the PC in step 6.

Step Action

1. PCout , MARin , Read , Clear Y , Set carry-in to ALU , Add , Zin

2. Zout , PCin , Wait for MFC

3. MDRout , IRin

4. PCout , Yin

5. Address-field-of-IRout , Add , Zin

6. Zout , PCin

7. End

Figure 5: (Control sequence for an unconditional branch instruction)

The offset X should be the difference between the branch address

and the address immediately following the branch instruction. For

example, if the branch instruction is at location 1000, and it is required to

branch to location 1050, the value of X should be set to 49.

Consider now the case of a conditional branch. The only difference

between this case and that is the need to check the status of the condition

codes between step 3 and 4. For example, if the instruction decoding

circuitry interprets the contents of the IR as a Branch on Negative (BRN)

instruction, the control unit proceeds as follows. First, the condition code

register is checked. If bit N (negative) is equal to 1, the control unit

proceeds with step 4 through 7 as in figure 5 (adding offset X). If N is

equal to 0, an End signal is issued. This terminates execution of the

branch instruction and causes the instruction immediately following in

the program to be fetched when a new fetch operation is performed.

Computer Architecture 48

Therefore, the control sequence for the conditional branch

instruction BRN can be obtained in figure 6.

Step Action

1. PCout , MARin , Read , Clear Y , Set carry-in to ALU , Add , Zin

2. Zout , PCin , Wait for MFC

3. MDRout , IRin

4. if N then End

5. else PCout , Yin

6. Address-field-of-IRout , Add , Zin

7. Zout , PCin

8. End

Figure 6: (Control sequence for an conditional BRN instruction)

If the instruction decoding circuitry interprets the contents of the

IR as a Branch on Zero (BRZ) instruction, the control unit proceeds as

follows:

Step Action

1. PCout , MARin , Read , Clear Y , Set carry-in to ALU , Add , Zin

2. Zout , PCin , Wait for MFC

3. MDRout , IRin

4. if Z then End

5. if Z then

6. PCout , Yin

7. Address-field-of-IRout , Add , Zin

8. Zout , PCin

9. End

Computer Architecture 49

Parallelism in Microinstructions:

 Microprogrammable processors are frequently characterized by the

maximum number of microoperations that can be specified by a single

Microinstruction. This number can vary from one to several hundred.

Microinstructions that specify a single microoperation are quit similar to

conventional machine instructions. They are relatively short, but due to

the lack of parallelism, more microinstructions may be needed to perform

a given operation.

 Microinstructions are often designed to take advantage of the fact

that at the microprogramming level, many operations can be performed in

parallel.

Types of Microinstructions:

1) Horizontal Microinstructions.

2) Vertical Microinstructions.

1) Horizontal Microinstructions:

In this form, for each microorder one bit is provided to achieve a

corresponding microoperation. Each bit is a control field for a control

line. Horizontal microinstructions have the following general attributes:

1- Long formats, thus the CM width depends on how long this format is?

2- Ability to express a high degree of parallelism.

3- Little encoding of the control information.

2) Vertical Microinstructions:

 This type of microinstructions divided into control fields that each

control field represented by many control bits. Therefore, each control

field must be connected to a decoder from which the control signals are

derived. This type has the following attributes:

1- Short format.

2- Limited ability to express parallel microoperations.

0 1 2 ……………………………………13

Control fields

Control lines

Computer Architecture 50

3- Considerable encoding of the control information.

 For a single control field microinstruction, there is no parallelism

will be achieved, thus only a single one microoperation will take place in

one cycle.

 But for more control fields, each control field will achieve in a

single microoperation, therefore, a few parallelisms will appear in one

cycle.

 Sometimes the two formats can be used together in a new format.

No parallelism

Single control field

Control lines

Control fields

Control lines

Control lines

Control fields

Computer Architecture 51

