COLLEGE OF EDUCATION FOR PURER SCIENCE CHEMISTRY DEPARTMENT CLASS 4 ELECTIVE ORGANIC CHEMISTRY

BY PROF.YASSIR SHAKEEB MOHAMMAD AL-JAWAHERI

INTRODUCTION TO NITRO COMPOUNDS
CHEMISTRY OF ORGANIC
FUNCTIONAL GROUPS
BY PROF. YASSIR SHAKEEB
MOHAMED

LECTURE 1

- WHAT ARE NITRO COMPOUNDS?

- ORGANIC COMPOUNDS CONTAINING ONE OR MORE **-NO₂ GROUPS** BONDED DIRECTLY TO CARBON ATOMS
 - EXAMPLES: NITROMETHANE, NITROBENZENE
 - SOME ARE NATURALLY OCCURRING; MOST ARE SYNTHETIC
 - USED IN INDUSTRIAL SOLVENTS AND EXPLOSIVES

- Structure of the Nitro Group
- Resonance hybrid of two equivalent structures
 - sp² hybridization at nitrogen
 - Delocalized π orbital over N and O atoms
- - Bond length ~121 pm (between single and double bond)

CLASSIFICATION

- **ALIPHATIC NITRO COMPOUNDS** (NITROPARAFFINS): E.G., NITROMETHANE
 - **AROMATIC NITRO COMPOUNDS** (NITROARENES): E.G., NITROBENZENE
 - BASED ON CARBON ATTACHMENT:
 - PRIMARY, SECONDARY, TERTIARY NITRO COMPOUNDS

- Isomerism
- Nitro compounds vs. alkyl nitrites (isomers)
- Carbon bonded to oxygen in nitrites
- Structural isomerism due to position of nitro group

- Nomenclature
- IUPAC rules: prefix "nitro" + parent hydrocarbon
- Numbering gives lowest possible number to nitro group
- Examples:
- 1-nitropropane
- p-nitrotoluene

- Nitro compounds contain the –NO₂ functional group
- Classified as aliphatic or aromatic
- Resonance-stabilized nitro group
- Important in industrial and explosive applications

PREPARATION OF NITRO COMPOUNDS

LECTUR 2

From Saturated Hydrocarbons

- Vapour phase nitration using HNO₃ or N₂O₄

- Free radical mechanism

- Products: mixtures of nitroalkanes

- Industrial use: solvents

From Unsaturated Hydrocarbons

- Alkenes react with N₂O₄/O₂ → vic-dinitro compounds
 - Base-catalyzed elimination → nitroalkenes

From Alkyl Halides

- Ambident nucleophile: nitrite ion (attacks via O or N)
- Reactions with NaNO₂ or AgNO₂
- Yields: nitro compounds (N attack) or nitrites (O attack)

From Halocarboxylic Acids

- Chloroacetic acid + nitrite \rightarrow nitroacetic acid \rightarrow decarboxylation \rightarrow nitromethane

From Amines

- Oxidation of primary amines \rightarrow hydroxylamine \rightarrow nitroso compound \rightarrow nitro compound
- $KMnO_4$ in aqueous acetone \rightarrow high yield of nitro compounds

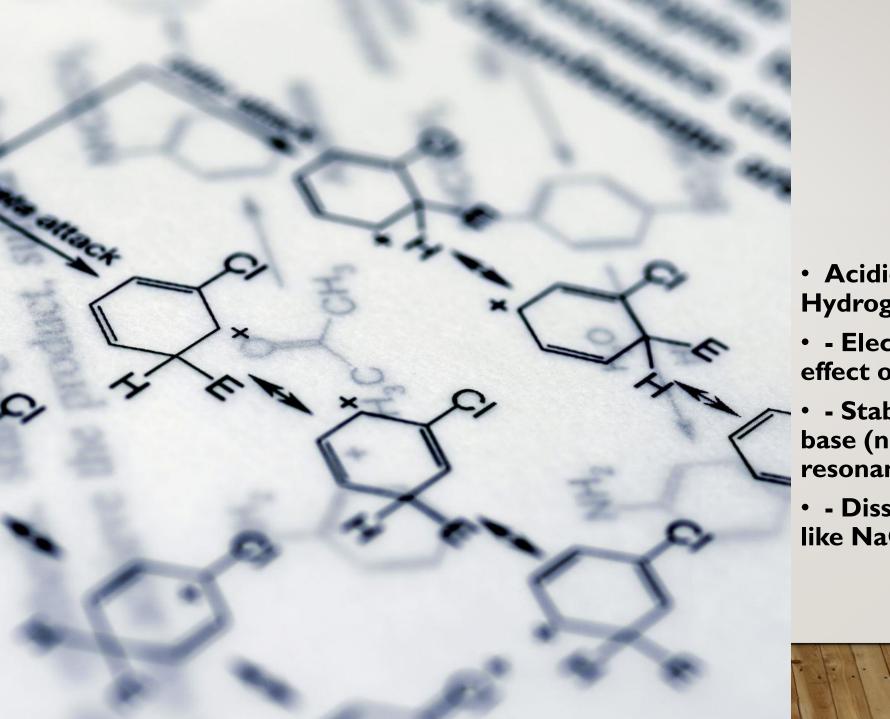
Preparation of Aromatic Nitro Compounds

- Nitration of benzene using nitrating mixture (HNO₃ + H₂SO₄)
- Electrophilic substitution mechanism
- Formation of nitronium ion (NO₂⁺) as electrophile

Summary

- Methods include nitration of alkanes/arenes, reaction of halides/nitrite, oxidation of amines
- Each method has specific conditions and reagents
- Understanding mechanisms helps predict products

PHYSICAL PROPERTIES AND ACIDIC NATURE OF NITRO COMPOUNDS


LECTUR 3

Physical Properties

- Highly polar with large dipole moments (~3–4 D)
 - Boiling points higher than isomeric nitrites
- Solubility: lower members sparingly soluble in water
 - Explosive nature (especially polynitro compounds

Comparison with Nitrites

- Nitro compounds vs. alkyl nitrites
- Differences in polarity, boiling point, solubility
- Stability: nitroalkanes stable; nitroarenes unstable

- Acidic Character of α-Hydrogens
- - Electron-withdrawing effect of nitro group
- - Stabilization of conjugate base (nitronate ion) by resonance
- Dissolves in strong bases like NaOH

Aci-Nitro Form

- Tautomer of nitro compound
 - More acidic and reactive
- Can act as nucleophile or electrophile in reactions

Pseudo-Acidity

- Slow back conversion from aci-form to nitro form
- Makes nitro compounds appear only weakly acidic
 - Applications in organic synthesis

Summary

- Nitro compounds are highly polar and have unique physical behavior
- α -Hydrogens show acidic character due to resonance stabilization
 - Aci-nitro form plays key role in many reactions

CHEMICAL REACTIONS OF NITROALKANES

LECTUR 4

HENRY REACTION

- CARBON-CARBON BOND FORMATION
- REACTION BETWEEN NITRO COMPOUND (ACI-FORM) AND ALDEHYDE/KETONE
- PRODUCT: B-NITRO ALCOHOL OR A-NITROALKENE

Michael Addition

- With α , β -unsaturated esters/carbonyl compounds
 - Base-catalyzed addition
 - Product: Michael adducts

Halogenation

- Chlorination/bromination of α -hydrogens
- All α -H replaced under basic conditions
- Example: chloropicrin from nitromethane

Alkylation

- Deprotonation \rightarrow nitronate ion \rightarrow reaction with alkyl halides
 - Butyllithium used for deprotonation
 - Useful for creating new C–C bonds

Nef Reaction

- Hydrolysis of nitro compounds → aldehydes/ketones + nitrous oxide
 - Two-step process: salt formation + acid hydrolysis

Mannich Reaction

- With formaldehyde and amine
 - Forms nitroamines
- Used in pharmaceutical synthesis

Hydrolysis of Nitroalkanes

- Cleavage of C-N bond under acidic conditions
- Primary nitroalkanes \rightarrow carboxylic acids + hydroxylamine
 - Secondary nitroalkanes \rightarrow ketones + nitrous oxide

Summary

- Nitroalkanes undergo diverse reactions due to aci-form
- Many reactions involve nucleophilic/electrophilic behavior
 - Useful in forming new C–C and C–N bonds

REDUCTION AND SUBSTITUTION REACTIONS OF

NITRO COMPOUNDS

LECTUR5

OVERVIEW OF REDUCTION PATHWAYS

- STEPWISE REDUCTION: NITRO → NITROSO
- → HYDROXYLAMINE → AMINE
- FINAL PRODUCT: PRIMARY AMINE IF FULLY REDUCED

CATALYTIC REDUCTION

- H₂ WITH CATALYSTS (NI, PT, PD/C)
- CLEANEST ROUTE TO ANILINE-TYPE COMPOUNDS

ACIDIC MEDIUM REDUCTION

- METALS (FE, SN, ZN) + HCL
- TRANSFER OF ELECTRONS AND PROTONS
- SIDE PRODUCTS POSSIBLE WITH SNCL₂

NEUTRAL AND ALKALINE REDUCTION

- NEUTRAL: ZN + NH₄CL →
- **HYDROXYLAMINES**
- ALKALINE: NAOH/GLUCOSE →
- **AZOXYBENZENE**
- ZN + NAOH → AZOBENZENE

ELECTROLYTIC AND LIALH4 REDUCTION - PH-DEPENDENT ELECTROLYTIC REDUCTION

- LITHIUM ALUMINUM HYDRIDE GIVES PRIMARY AMINES (ALIPHATIC) OR AZO COMPOUNDS (AROMATIC)

- ELECTROPHILIC SUBSTITUTION
- META-DIRECTING EFFECT OF NITRO GROUP
- DEACTIVATES RING → ONLY META POSITIONS REACT
- NO FRIEDEL-CRAFTS REACTION DUE TO STRONG ELECTRON WITHDRAWAL

- NUCLEOPHILIC SUBSTITUTION
- ORTHO/PARA POSITIONS ATTACKED BY NUCLEOPHILES
- EXAMPLE: KOH → O-NITROPHENOL
- PRESENCE OF SECOND NITRO GROUP ENHANCES DISPLACEMENT

- BENZIDINE REARRANGEMENT
- MECHANISM: [5,5] SIGMATROPIC REARRANGEMENT
- IMPORTANCE IN DYE CHEMISTRY

SUMMARY

- NITRO COMPOUNDS CAN BE REDUCED TO VARIOUS NITROGEN-CONTAINING PRODUCTS
- REDUCTION PATHWAY DEPENDS ON MEDIUM AND REAGENT
- NITRO GROUP INFLUENCES SUBSTITUTION REACTIONS SIGNIFICANTLY
- REARRANGEMENT REACTIONS OPEN PATHWAYS TO COMPLEX MOLECULES