Group Theory

Assis. Prof. Dr Ali A Alabdali 2024-2025

Year 2

Lecture 1

Binary Operation

Definition

A binary operation * on a set S is a function mapping $S \times S$ into S. For each $(a, b) \in S \times S$, we will

denote the element * (a, b) of S by a * b.

Examples

- **i.** The addition + is a binary operation on the set \mathbb{R} . Our usual multiplication is a different binary
- ii. operation on \mathbb{R} . In this example, we could replace \mathbb{R} by any of the sets \mathbb{C} , \mathbb{Z} , \mathbb{R}^+ or \mathbb{Z}^+ .

Groups

A pair (G,*) where G is a non-empty set and (*) a binary operation in G is a group if and only if:

- i. The binary operation * closed, i.e., a * b = b * a, $\forall a, b \in G$
- ii. The binary operation * is associative, i.e., a * b * c = a * (b * c), $\forall a, b, c \in G$
- iii. There is an identity element $e \in G$ such that for all $a \in G$, a * e = e * a = a
- iv. For each $a \in G$ there is an element $a' \in G$ such that a * a' = a' * a = e
- a' is called the inverse of a in G and is denoted by a^{-1} .

Properties of a Group:

Let G be a group, then following are the some important properties of G;

- a) Cancelation law holds in G. That is, a*b=a*c implies b=c, and b*a=c*a implies b=c for all $a,b,c\in G$.
- b) Identity element is unique.
- c) Inverse of an element is unique.
- d) $(a^{-1})^{-1} = a$, $\forall a \in G$.
- e) $(ab)^{-1} = b^{-1}a^{-1}$.

Semigroup And Monoid

A set with an associative binary operation is called a semigroup. A semigroup that has an identity element for the binary operation is called monoid.

Note that: every group is both a semigroup and a monoid.

Commutative Group

A group G is abelian if its binary operation is commutative. That is,let (G, *) be a group. Let a, $b \in G$, then G is called an abelian group if and only if

$$a * b = b * a$$

Examples

- a. The familiar additive properties of integers, rational, real and complex numbers show that \mathbb{Z} , \mathbb{Q} , \mathbb{R} and \mathbb{C} under addition abelian groups.
- b. The set \mathbb{Z}^+ under addition is not a group. There is no identity element for + in \mathbb{Z}^+ .
- c. The set \mathbb{Z}^+ under multiplication is not a group. There is an identity 1, but no inverse of 3.

Lecture 2

Example

Example Let * be defined on \mathbb{Q}^+ by $a * b = \frac{ab}{2}$. Then $a * (b * c) = a * \frac{bc}{2} = \frac{abc}{4}$, and likewise $(a * b) * c = \frac{ab}{2} * c = \frac{abc}{4}$

SOLUTION Let * defined on \mathbb{Q}^+ by $a * b = \frac{ab}{2}$

i. Closed property. For $a, b \in \mathbb{Q}^+$, we have $a * b = \frac{ab}{2}$. Thus, closed property holds.

ii. Associative property. For $a, b, c \in \mathbb{Q}^+$, $(a * b) * c = \frac{ab}{2} * c = \frac{abc}{2} \times \frac{1}{2} = \frac{abc}{4}$,

$$a * (b * c) = a * \frac{bc}{2} = \frac{1}{2} \times \frac{abc}{2} = \frac{abc}{4}.$$

Thus, associative law holds.

Following the solution

iii. Identity. Given that $a * b = \frac{ab}{2}$. Let $e \in \mathbb{Q}^+$, since a * e = e * a = a. Now $a * e = \frac{ae}{2}$

$$\Rightarrow a * 2 = \frac{a \times 2}{2} = a$$

Similarly, $\Rightarrow 2 * a = \frac{2 \times a}{2} = a$. Thus e = 2 is the identity element.

iv. Inverse. For $a \in \mathbb{Q}^+$, since a * a' = a' * a = e. By computing $a * a' = \frac{aa'}{2}$, $a * \frac{4}{a} = \frac{a \times 4}{2 \times a} = 2$

Similarly, $\frac{4}{a} * a = 2$

 $a' = \frac{4}{a}$ is the inverse of a. Hence inverse of each element exists. Thus $(\mathbb{Q}^+,*)$ is a group.

Definitions

Order of a Group

The number of elements in a group (G,*) is called the order of a group and is denoted by |G|.

Order of an element

Let a be any element of a group G. A non-zero positive integer n is called the order of a if $a^n = e$ and n is the least such integer, and e is the identity element of G.

Finite and Infinite Group

A group G is said to be finite if G consists of the finite number of elements. A group G is said to be an infinite group if G consists of the infinite number of elements.

Examples

i. Let $\mathbb{Z}=\{\ldots,-3,-2,-1,0,+1,+2,+3,\ldots\}$ is a group under addition, then

$$|Z| = \infty$$
 and for $2 \in \mathbb{Z}$, $|2| = \infty$.

ii. Let $G = \{1, -1, i, -i\}$, then |G| = 4.

Lecture 3

Subgroup

If a subset H of a group G is closed under the binary operation defined on G and if H with the induced operation of G is itself a group, then H is called a **subgroup** of G and is denoted by $H \leq G$ or $G \geq H$.

OR

A subset H of a group G is called a **subgroup** of G if and only if H is itself a group under the same binary operation defined on G.

Remark Every group G has a subgroup G itself and the identity $\{e\}$, where e is the identity element. The subgroups G and $\{e\}$ are called **trivial subgroups** of G. All other subgroups of G are called the **non-trivial (proper) subgroups** of G.

Examples

i. $(\mathbb{Z}, +)$ is a subgroup of $(\mathbb{Q}, +)$ and $(\mathbb{Q}, +)$ is a subgroup of $(\mathbb{R}, +)$.

ii. The set \mathbb{Q}^+ under multiplication is a subgroup of \mathbb{R}^+ under the algebraic operation multiplication.

Theorem

Theorem: A non-empty subset H of a group G is a subgroup of G if and only if for any pair of $a,b \in H$, $ab^{-1} \in H$; $a \neq b \neq e$.

Proof: Suppose that H is a subgroup of a group G, then (H,*) is a group.

Therefore, if $b \in H$, $b^{-1} \in H \Rightarrow ab^{-1} \in H$ and $ab^{-1} \in H$ (closed property)

Conversely, suppose that for $a, b \in H$, $ab^{-1} \in H$.

To prove H is a subgroup, put $b=a\Rightarrow a, a\in H\Rightarrow aa^{-1}\in H\Rightarrow e\in H$.

 \Rightarrow identity element exists.

Following the proof

Now, let $e,b \in H \Rightarrow e,b^{-1} \in H \Rightarrow eb^{-1} \in H \Rightarrow b^{-1} \in H$.

 \Rightarrow inverse of each element exists in H.

Again, let $a, b \in H \Rightarrow a, b^{-1} \in H$

$$\Rightarrow a(b^{-1})^{-1} \in H$$

$$\Rightarrow ab \in H$$

Thus, H is closed under the induced algebraic operation. The associative law holds in H as it holds in G.

Therefore, H is a subgroup.

Theorem

Theorem: Prove that the intersection of family of subgroups of a group G is a subgroup of G.

Proof Let $\{H_{\alpha}\}_{\alpha\in I}$ be a family of subgroups of G. we have to show that $H=\bigcap_{\alpha\in I}H_{\alpha}$ is a subgroup of G.

Let $a, b \in H$, then $a, b \in H_{\alpha}$ for each $\alpha \in I$.

Since H_{α} is a subgroup of G, so $ab^{-1} \in H_{\alpha}$ for each $\alpha \in I$.

Therefore, $ab^{-1} \in \bigcap_{\alpha \in I} H_{\alpha} = H$

 \Rightarrow H is a subgroup of G. Hence the intersection of family of subgroups of G is a subgroup of G.

Lecture 4

Theorem

Theorem: The union $H \cup K$ of two subgroups H, K of a group G is a subgroup of G if and only if either $H \subseteq K$ or $K \subseteq H$.

Proof: Suppose that either $H \subseteq K$ or $K \subseteq H$. We have to show that $H \cup K$ is a subgroup of G.

Now,
$$H \cup K = H : K \subseteq H, H \cup K = K : H \subseteq K$$

Thus $H \cup K$ is a subgroup of G as H, K are subgroups of G.

Conversely, suppose that $H \cup K$ is a subgroup of G. To prove either $H \subseteq K$ or $K \subseteq H$, suppose on contrary that $H \nsubseteq K$, $K \nsubseteq H$

Let $a \in H \setminus K, b \in K \setminus H$. Since, $b \in H \cup K$, therefore $ab \in H \cup K : H \cup K$ is a subgroup.

Following the proof

 \Rightarrow either $ab \in H$ or $ab \in K$. Suppose that $b \in H$, then

$$b = a^{-1}(ab) \in H : H \text{ is a subgroup}$$

Similarly, suppose $b \in K$, then

$$a = (ab)b^{-1} \in K : K \text{ is a subgroup}$$

This is contradiction to our supposition so either $H \subseteq K \text{ or } K \subseteq H$.

Theorem

Theorem: Show that \mathbb{Z}_P has no proper subgroup if P is a prime number.

Proof: As number of subgroups of \mathbb{Z}_P is the same as the number of distinct divisors of P which are 1 and P itself.

Hence the number of distinct subgroups of \mathbb{Z}_P are two 1 and \mathbb{Z}_P itself.

Thus, the number of proper subgroups is zero (no proper subgroups), as we can say that \mathbb{Z}_P has no proper subgroups.

Lecture 5

Cyclic Group

A group G is said to be cyclic if and only if it is generated by a single element. i.e., a group G is cyclic if there is some element $\alpha \in G$ that generates G. If G is finite cyclic group of order G, then

$$G = < a : a^n = e >$$
.

If an element of G is the generator of G then its inverse is also the generator of G.

Examples

- i. A group $G = \{1, -1, i, -i\}$ is cyclic group as < i > is its generator.
- ii. A group $\mathbb{Z}_5 = \{0,1,2,3,4\}$ under modulo addition is cyclic group. Since every element of \mathbb{Z}_5 is in the power of a single element that is 1. Therefore 1 is the generator of \mathbb{Z}_5 .
- iii. A set $\{1, -1\}$ is a cyclic group under multiplication.

Theorem

Theorem: Every cyclic group is commutative.

Proof: Let G be a cyclic group and let a be a generator of G.

Let x, $y \in G$, then there exist integers m and n such that

$$x = a^m, y = a^n$$

Now,
$$xy = a^m a^n = a^{m+n} = a^{n+m} = a^n a^m = yx$$

So G is commutative.

Following the proof

Theorem: Every subgroup of a cyclic group is cyclic.

Proof: Let G be cyclic group generated by a. Let H be a subgroup of G and k be the least positive integer such that $a^k \in H$. We have to prove that H is generated by a^k .

For this, let $a^m \in H$, $\forall m > k$, then there exist integers q and r such that

$$m = kq + r, 0 \le r \le k$$

$$\Rightarrow a^m = a^{kq} + a^r$$

$$= (a^k)^q \cdot a^r$$

$$\Rightarrow a^m = (a^k)^{-q} = a^r$$

Following the proof

Since a^m and $(a^k)^{-q}$ are in H. Therefore, $a^r \in H$. But since k is the smallest integer for which $a^k \in H$ and r < k, so $a^k \in H$ is possible only if r = 0. But if r = 0, then m = qk

$$\Rightarrow a^m = a^{kq}$$

$$\Rightarrow a^m = a^{kq} \in H$$

 $\Rightarrow a^k$ is the generator of H.

Hence H is cyclic subgroup of G.