Course Description Form

1. Course Name: Soil chemistry 2. Course Code: SOCH350 3. Semester / Year: First Autumn semester/2024-2023 4. Description Preparation Date: 2023/9/1 5. Available Attendance Forms: My Presence 6. Number of Credit Hours (Total) / Number of Units (Total) 2 theortical +3 prtical /3.5 units 7. Course administrator's name (mention all, if more than one name) Name: Assistant Prof.dr. Abdalkader Absh Sbak Email:dr.abdalkaderabshsbak@uomosul.edu.iq Name: Ahmed samer ghanim Email: ahmedaltaay1986@uomosul.edu.iq 8. Course Objectives • The learner should be able to understand and understand the relationship between the crystal and its

- systems and axes.
- Enable the student to know the structural composition of silicate minerals
- Enabling the student to understand and know the most important structural properties of minerals
- Identify the transformations that occur in clay minerals
- · Enable the student to become familiar with the most important methods for detecting and distinguishing clay minerals and the special parameters for diagnosing soil minerals.
- Enable the student to identify the crystalline structure of minerals
- · Identifying the surface charges of clay separations
- · Measurement of variable and fixed charges on clay surfaces
 - 9. Teaching and Learning Strategies
 - Interactive lecture
 - Brainstorming
 - Dialogue and discussion
 - Field Training
 - Practical exercises
 - Field project
 - Self-education
- 10. Course Structure

eek	Hours	Required Learning	Unit or subject	Learning	Evaluation	
		Outcomes	name	method	method	
	2Theoretical	A1: The student learns about the types of elements involving in the composition of the Earth's crust B1: The student distinguish between types of rocks (igneous, sedimentary, metamorphic)	for the earth's crus	brainstorming	Theoretical: Semester exam 1, final exam	
	3practical	C10: The student collects different soil samples C11: Grinds and sieves soil samples C12: Prepares soil samples analysis	practical: The student plans to collect a comprehensive sample of the entire field for the purpos of preparing it for chemical analyses	practical: Interactive lecture, brainstorming dialogue discussion, fi training, practical exercises, self-learning	practical: Short practical test	
	2Theoretical	A2: The student identifies to close relationship between to three soil phases A3: The student describes to volumetric relationship between soil components	chemistry with other			

	3practical	A13: Recognizes the basic units C13: Converting units to ot units according to international and basic units A14: Demonstrates the conversion of old units to n units	practical: Basic and universa units	practical: Interactive lecture, brainstorming dialogue discussion, fi training, practical exercises, self-learning	practical: Short practical test
3	2Theoretical	A3: The student differentiat between crystalline systems by the number of faces, axis length, and interfacial angle A4: The learner distinguish between the cubic, hexagon triangular, monoclinic, and triangular systems.		Interactive lecture, brainstorming dialogue discussion, s learning	Theoretical: Semester exam 1, final exam
	3practical	C14: Measures soil pH C15: Measures total dissolv salts in the soil	practical: Methods for estimating soil pH and total dissolved salts in the soil	practical: Interactive lecture, brainstorming dialogue discussion, fi training, practical exercises, self-learning	practical: Short practical test
4	2Theoretical	A5: The student learns about the most important sources organic matter C2: The student discovers to general structure of organic matter B3: The student evaluates to stages of decomposition of organic matter	2-The general composition of organic matter	Interactive lecture, brainstorming dialogue discussion, s learning	Theoretical: Semester exam 1, final exam

	3practical		practical: Exchange capacity	practical: Interactive	practical: Short practical test
		B11: Cation exchange capacity is extracted by saturation with sodium acet C16: Measures the cation exchange capacity with a flame photometer	cations	lecture, brainstorming dialogue discussion, fi training, practical exercises, self-learning	
5	2Theoretical	A5: The student learns about the physical and chemical properties of humus through the color of the soil. B4: The student evaluates the nature of the relationship between humic compounds and their solubility in acidic and basic media	Theoretical: 1- Physical and chemical properties humus 2- Basic totals For humic compounds	Interactive lecture, brainstorming dialogue discussion, s learning	Theoretical: Semester exam 1, final exam
	3practical	C17: Ammonium oxalate is used in the determination or active calcium carbonate C18: Analyze the remaining amount of oxalate by titratic with potassium permangana		practical: Interactive lecture, brainstorming dialogue discussion, fr training, practical exercises, self-learning	practical: Short practical test
6	2Theoretical	A6: The student determines the nature of the chemical composition of the soil solution from ionic species C3: The student is familiar with the nature of the chemical equilibrium of the soil solution	solution 2- The nature of the chemical equilibriu of the soil solution	dialogue discussion, s learning	

	3practical	C19: Determines gypsum in the soil using acetone C20: Draw the relationship between the electrical conductivity of the soil extrand the gypsum concentrati	practical: Gypsum in the soil	practical: Interactive lecture, brainstorming dialogue discussion, fi training, practical exercises, self-learning	practical: Short practical test
7	2Theoretical	C4: The student explains th process of gaining or losing proton C5: The student explains th process of gaining or losing electron	2- Oxidation and reduction reactions	dialogue discussion, s	Theoretical: Semester exam 1, final exam
	3practical	C21: Calculates the regulate capacity in the soil through readings A15: Draw the relationship between the electrical conductivity of the soil extrand the gypsum concentrati		practical: Interactive lecture, brainstorming dialogue discussion, fi training, practical exercises, self-learning	practical: Short practical test
8	2Theoretical	A7: The student explains the phenomena that occur between the liquid and solid phases of soil B5 The student applies some equations to explain the reaction on clay surfaces	double layer	brainstorming dialogue	Theoretical: Semester exam 1, final exam

	3practical	C22: Soil pH is calculated through pH readings A16: Draws the relationship between soil pH and the concentration of the added acid or base	practical: Soil buffer	practical: Interactive lecture, brainstorming dialogue discussion, fi training, practical exercises, self-learning	practical: Short practical test
9	2Theoretical	A8: The student describes to ion exchange process using the law of mass action B6: The student evaluates to ion exchange process based the type of charge and the student of the ion	ion exchange reactions	brainstorming	Theoretical: Semester exam 1, final exam
	3practical	C23: The student makes a sextract C24: The student measures dissolved sodium element is the extract using a flame photometer A17: Draws the relationship between the reading obtained from the device and the element concentration from the standards of the standards solution.	Calculating exchanged ions in s	practical: Interactive lecture, brainstorming dialogue discussion, fi training, practical exercises, self-learning	practical: Short practical test
10	2Theoretical	B7: The student applies the Freundlich and Lankmeier equation to describe the process of adsorption and release B8: The student applies the equations (Kerr, Fanselow, and Capon) to describe the exchange processes betwee positive ions of similar and different valences.	equations (Freundlich, Langmuir) 2- Chemical equations (Kerr, Fanselow, Capon)	Interactive lecture, brainstorming dialogue discussion, s learning	Theoretical: Semester exam 1, final exam

	3practical	C25: The student makes a sextract C26: The student measures dissolved potassium elemer in the extract using a flame photometer A18: Draws the relationship between the reading obtained from the device and the element concentration from the standards of the standards solution.	Calculating exchanged ions in s	practical: Interactive lecture, brainstorming dialogue discussion, fi training, practical exercises, self-learning	practical: Short practical test
11	2Theoretical	A9: The student describes to process of dissolving CO2 gin water B9: The student evaluates to role of carbonic acid in the solubility of metals			Theoretical: Semester exam 1, final exam
	3practical	C27: Measures calcium in sextract by titration with ED C28: Measure calcium and magnesium in soil extract be titration with EDTA using the EBT index.		practical: Interactive lecture, brainstorming dialogue discussion, fi training, practical exercises, self-learning	practical: Short practical test
12	2Theoretical	C6: The student explains the nature of ionization of phosphoric acid A10: The student uses chemical equations to describe reactions of phosphorus soil	2- Phosphorus reactions in the soil	Interactive lecture, brainstorming dialogue discussion, s learning	Theoretical: Semester exam 1, final exam

	3practical	C29: Measures dissolved chloride in soil extract by titration with silver nitrate	practical: Calculating exchanged ions in:	practical: Interactive lecture, brainstorming dialogue discussion, fi training, practical exercises, self-learning	practical: Short practical test
13	2Theoretical	A11: The student draws dissolution diagrams to determine the metal controlling the dissolution C7: The student draws dissolution diagrams to determine the metal controlling the dissolution	Theoretical: 1- Melting schemes for carbonate minerals 2- Melting schemes for phosphorus minerals	Interactive lecture, brainstorming dialogue discussion, s learning	Theoretical: Semester exam 1, final exam
	3practical	C30: Extracts humic compounds in the soil by neutralizing them with sodi bicarbonate solution C31: Extracts humic compounds in the soil by neutralizing them with sodi hydroxide solution C32: The percentage of organic carbon in it is calculated using wet oxidati		practical: Interactive lecture, brainstorming dialogue discussion, fi training, practical exercises, self-learning	practical: Short practical test
14	2Theoretical	C8: The student explains the importance of soil pH A12: The student learns about the most important sources acidity in the soil	in the son	Interactive lecture, brainstorming dialogue discussion, s learning	

	3prac		compour C34: Cal strength compour C35: Cal	culates the ionic of double-charged ads culates the ionic of triple-charged	practical: Ionic strength in so	lecture, brainstorming dialogue discussion, fi training, practical exercises, self-learning	practical: Short practical test
15	2The	oretical	type of sa B10: The salt comp	student identifies the alinity and its source student evaluates position of the soil knowledge of the tions	Theoretical: 1- Sources of salini in the soil 2- The salt composition of sali soils	brainstorming dialogue	
	3prac	ctical	effective charge co C37: Cal coefficier compour C38: Cal	culates the reactivi nt for triple-charge	practical: Coefficient of effectiveness and effectiveness in soi	practical: Interactive lecture, brainstorming dialogue discussion, fi training, practical exercises, self-learning	practical: Short practical test
11.	Cour	se Evaluat		Calendar date	e degree	Relative	weight
		Calendar n	neurous	(week)	uegree	%	TO SAME
1		Report 1		fourth week	brother	2.5	
2		Report 2		The fifth week	brother	2.5	

3	Short test (1) Quiz	the sixth week	a	2
4	Short test (2) Quiz	The fourteenth week	а	2
5	Short test (3) Quiz	The fifteenth week	1	1
6	Semester test (1)	the sixth week	H.K	7.5
7	Semester test (2)	The eleventh week is difficult	H.K	7.5
8	Final theoretical test	Final semester exams	40	40
9	Practical field project	The fifteenth week	Kh	5
10	Field evaluation	The third and fifth week	a	2
11	Practical short test (1) Quiz	The first week	1	1
12	Short practical test (2) Quiz	fourth week	0.kh	0.5
13	Short practical test (3) Quiz	The fourteenth week	1	1
14	Live drawings and homework	Weeks 6, 8, 9, 10, 11, 12 and 13	Kh.kh	5.5
15	Final practical test	Final semester exams	20	20
	total	100	100%	%100

12. Learning and Teaching Resources	
Required textbooks (curricular books, if any)	Soil Chemistry book, written Dr. Kazem Mashhout 1986
Main references (sources)	
Recommended books and references (scientific journals, reports)	The book (Soil Minerals) write by Prof. Dr. Salman is behind Iss
Electronic References, Websites	

dr.Abd Alkader Absh Sbak

Theoretical subject teacher

dr.Abd Alkader Absh Sbak

Chairman of Scientific Committee

Ahmed Samir Ghanem

Practical subject teacher

dr.Amar Kashmo

Head of the Department