Course Description Form 1. Course Name: Design of Agricultural Machinery 2. Course Code: DAMA383 3. Semester / Year: second course 2023-2024 4. Description Preparation Date: 1/2/2024 5. Available Attendance Forms: presence 6. Number of Credit Hours (Total) / Number of Units (Total) 75 hours /3.5 units 7. Course administrator's name (mention all, if more than one name) Letcher: Shamil Mohammed Saleh Hassan Email: eng.sh.hassn@uomosul.edu.iq Letcher: Saad Tawfic Mohammed Email: Saad.t.m@uomosul.edu.iq ## 8. Course Objectives Theoretical: - - Enabling the student to know the style of design philosophy - Introducing the student to the importance and role of designing machine parts in practical life - Delve deeper into the concepts of optimal design through a study - Special scientific concepts for designing equipment and machines for machines - Agricultural to achieve optimal quality and performance of machine parts agricultural Practical: - Enabling the student to solve problems using mathematical concepts related engineering problems regarding the load on the machine or piece through stresses, strains, shocks, torsion, and other influencing factors. ## 9. Teaching and Learning Strategies Theoretical: - Interactive lecture - -Brainstorming - -Dialogue and discussion Assigning tasks Practical: - Assigning tasks - Dialogue and discussion - Interactive lecture | Week | Hours | Required Learning Outcomes | Unit or subject | Learning method | Evaluation method | |------|----------------|--|---|---|--------------------| | 1 | 2Theoretical | al: getting to Know the design concept and the things that should To be taken into consideration consideration when designing | Theoretical: An introduction to science the design | Interactive lecture,
brainstorming,
dialogue and
discussion, self-
learning | Quiz
discussion | | | 3
Practical | : all
solving
problems | Practical:
Solving
stress issues
and emotion | Interactive lecture,
brainstorming,
dialogue and
discussion, self-
learning | Quiz
discussion | | 2 | 2Theoretical | a2: getting to know
Stress term
direct stress and
emotion | Theoretical:
The concept
of forces
and stresses | Interactive lecture,
brainstorming,
dialogue and
discussion, self-
learning | Quiz
discussion | | | 3 Practical | a12 :
solving problems | Practical: Solving
stress issues
And emotion | Interactive lecture,
brainstorming,
dialogue and
discussion, self-
learning | Quiz
discussion | | 3 | 2Theoretical | a3: understanding the law Hook and elastic material How to calculate a coefficient Safety and longitudinal emotion And accidental And types of cutting | Theoretical: Hooke's law , ratio Bousbon , single shear Safety coefficient Single, double cut | Interactive lecture,
brainstorming,
dialogue and
discussion, self-
learning | Quiz
discussion | | minimizaci | 3 Practical | solving problems | Practical:
Solving
stress issues
and emotion | Interactive lecture,
brainstorming,
dialogue and
discussion, self-
learning | Quiz
discussion | |------------|--------------|---|--|---|--------------------| | 4 | 2Theoretical | a4: Identify the tests that are conducted On materials and minerals used in design | Theoretical: technical examinations must be carried out in the design Machinery parts | Interactive lecture,
brainstorming,
dialogue and
discussion, self-
learning | Quiz
discussion | | | 3 Practical | a14: examinations
that run
on materials
and metals
before use | Practical: conducting examinations Laboratory (shock and hardness) | Interactive lecture,
brainstorming,
dialogue and
discussion, self-
learning | Quiz
discussion | | 5 | 2Theoretical | c1: conduct an experiment stretching on a specific metal and performing a shock test and the hardness | Theoretical: Tensile experiment, Compound stresses in designs | Interactive lecture,
brainstorming,
dialogue and
discussion, self-
learning | Quiz
discussion | | | 3 Practical | a15: Conduct an experiment | Practical: Conducting shock, shock and hardness experiments practically | Interactive lecture,
brainstorming,
dialogue and
discussion, self-
learning | Quiz
discussion | | 6 | 2Theoretical | a5: knowing how
Draw
shear forces
and moments
Bending for
concentrated
loads | Theoretical: Application of shear force and bending moment diagrams for concentrated loads | Interactive lecture, brainstorming, dialogue and discussion, self-learning | Quiz
discussion | | | 3 Practical | b3: solving
problems | Practical: solving Power problems Shear and bending Moments for Concentrated loads | Interactive lecture,
brainstorming,
dialogue and
discussion, self-
learning | Quiz
discussion | |---|--------------|---|---|---|--------------------| | | | | | | | | | | | | | | | 7 | 2Theoretical | a6: knowing how
Draw shear
Forces
and moments
Bending for
distributed
loads | Theoretical:
applying schemes
Shear forces
and bending
moments for
distributed loads | Interactive lecture,
brainstorming,
dialogue and
discussion, self-
learning | Quiz
discussion | | | 3 Practical | b4: solving
problems | Practical: solving
Load problems
spreader | Interactive lecture,
brainstorming,
dialogue and
discussion, self-
learning | Quiz
discussion | | 8 | 2Theoretical | c2: knowing how
Draw shear
Forces and
the bending
moment
when exposed
The machine or part
for me | Theoretical: applying schemes Shear forces and bending moments Using li or torque | Interactive lecture,
brainstorming,
dialogue and
discussion, self-
learning | Quiz
discussion | | | 3 Practical | b5: solving problems | Practical: Solving power problems Shear and Bending moments | Interactive lecture,
brainstorming,
dialogue and
discussion, self-
learning | Quiz
discussion | | 9 | 2Theoretical | c3: knowing how
Draw shear
forces and
moments
Bending for
inclined loads | Theoretical: Application of shear force and bending moment diagrams For inclined loads | Interactive lecture,
brainstorming,
dialogue and
discussion, self-
learning | Quiz
discussion | |----|--------------|---|--|---|--------------------| | | 3Practical | a16: solve
examples | Practical: solving
Shear force
problems
Bending moments
for inclined loads | Interactive lecture,
brainstorming,
dialogue and
discussion, self-
learning | Quiz
discussion | | 10 | 2Theoretical | a7: knowledge
of elements
Simple
bending theory
Explain the concept
of curvature | Theoretical: bending
theory
Simple and
its applications | Interactive lecture,
brainstorming,
dialogue and
discussion, self-
learning | Quiz
discussion | | | 3 Practical | a17:
finding
determination
The second is
for space for
each
Other shapes | Practical: How to find the second moment For the area of some shapes T and I | Interactive lecture,
brainstorming,
dialogue and
discussion, self-
learning | Quiz
discussion | | 11 | 2Theoretical | a8: acquisition Knowing how to find the second moment for space using the axial method Parallel or method Regular and specific neutral line | Theoretical: The second moment of space and the neutral axis | Interactive lecture,
brainstorming,
dialogue and
discussion, self-
learning | Quiz
discussion | | | 3Practical | b6: solve
examples | Practical: Solve finding problems The second moment of area and line neutral | Interactive lecture,
brainstorming,
dialogue and
discussion, self-
learning | Quiz
discussion | | 12 | 2Theoretical | a9: knowledge
Shapes of thresholds
Most used
Common in designs | Theoretical:
geometric
thresholds
Most used in designs | Interactive lecture,
brainstorming,
dialogue and
discussion, self-
learning | Quiz
discussion | |----|--------------|--|--|---|--------------------| | | 3 Practical | a18: more
clarification
Thresholds used in
Designs T and I | Practical:
solving theoretical
problems
Simple
bending | Interactive lecture,
brainstorming,
dialogue and
discussion, self-
learning | Quiz
discussion | | | 1.000 | | | | | | 13 | 2Theoretical | a10: getting to know Elements of torsion theory The concept of theory in preparation Designs | Theoretical:
torsion theory
Simple and its
applications | Interactive lecture,
brainstorming,
dialogue and
discussion, self-
learning | Quiz
discussion | | | 3Practical | a19: solve
Examples rotating
parts | Practical:
solving theoretical
problems
Simple contortions | Interactive lecture,
brainstorming,
dialogue and
discussion, self-
learning | Quiz
discussion | | 14 | 2Theoretical | b1: how to find
Moments and twist
angles for solid and
hollow columns | Theoretical:
rotating columns
Solid and hollow
Used in design | Interactive lecture,
brainstorming,
dialogue and
discussion, self-
learning | Quiz
discussion | | | 3 Practical | b7: solve
examples | Practical:
solving theoretical
problems
minor sprains | Interactive lecture,
brainstorming,
dialogue and
discussion, self-
learning | Quiz
discussion | | 15 | 2Theoretical | b2: getting to know
twist moment
diagrams on rotating
axes | Theoretical:
applying schemes
Twist
moments on the axes
rotary | Interactive lecture,
brainstorming,
dialogue and
discussion, self-
learning | Quiz
discussion | | 3 | 3 Practical | problems the | ractical: solving
eoretical problems
inor sprains | Interactive lecture,
brainstorming,
dialogue and
discussion, self-
learning | Quiz
discussion | |--|---------------------------------------|--------------------------|---|--|--------------------| | 11. C | Course Eva | aluation | | | | | | eoretical
9%
am 60%
ade 100% | and Teaching Resources | | | | | 12. Learning and Teaching Resources Required textbooks (curricular books, if any) | | | 1. The bo | The book Mechanics of Materials, Part One, translated by Professor Dr. Sabah Muhammad Jameel Ali | | | Main refe | erences (so | ources) | Dr. Saba | n Munammad Jameel A | Ali | | Recomme | reports) | ooks and references (sci | sientific | | | | Electronic | c Reference | es, Websites | | | | مدرس المادة العملي: م. شامل محمد صالح حسن الم القسم ا مدرس المادة النظري: م. سعد توفيق محمد رئيس اللجنة العلمية أ.د.أركان محمد امين صديق