Course Description Form 1. Course Name: **Fluid Mechanics** 2. Course Code: FLME379 3. Semester / Year: first semester 2023-2024 4. Description Preparation Date: 1/2/2024 5. Available Attendance Forms: Combined (Attendance + distance education) 6. Number of Credit Hours (Total) / Number of Units (Total) 30 theoretical hours +45 practical hours =75 hours / 3.5 Units 7. Course administrator's name (mention all, if more than one name) Name: Ahmed Mohammad Ameen Saeed Email:ahmed_ameem@uomosul.edu.iq Salih Sabrry Ali 8. Course Objectives 1- Introducing the student to how to use conversion tables (energy, pressure, mass, momentum...) And use it in designs, analyses, and flow sciences 2- Increasing the student's knowledge of how pressure occurs and knowing the types and measuring devices 3- Study losses in pipes and curves and develop correct designs for drainage in pipes 4- The student's understanding, complete knowledge, and familiarity with the subject of pumps, their types and parts, how they work and operate, finding their costs and pressures, and the ability necessary for that. 9. Teaching and Learning Strategies 1-Interactive lecture 2-Brainstorming 3-Dialogue and discussion **4-Field Training** 5-Practical exercises 6-Field project 7-Self-education | Week | Hours | Required Learning | Unit or subject name | Learning | Evaluati | |------|---------------|--|--|--|--| | | | Outcomes | omit of subject name | method | on
method | | 1 | 2 theoretical | al knows the meaning of fluid,
fluid properties, fluid
mechanics, and standard units
used to study fluids | Definition of fluid and its
relationship to fluid mechanics
and fluid properties | Interactive
lecture,
brainstormin
g, dialogue
and
discussion,
self-learning | Short
daily
test1
Semester
test1
Final test | | | 3 Practical | c4the student conducts experiments a3 and solves mathematical problems about the properties of fluids | Definition of fluid and its relationship to fluid mechanics and fluid properties | Interactive lecture, brainstormin g, dialogue and discussion, field training, and self- learning | Short
daily
test1
Semester
test1
Final test | | 2 | 2 theoretical | a2 learns about the meaning of
pressure, pressure units, and
atmospheric pressure, as well as
the basic equations of fluid
balance | Hydrostatics (the science of fluid balance) | Interactive lecture, brainstormin g, dialogue and discussion, self-learning | Short
daily
test1
Semester
test1
Final test | | | 3 Practical | c4the student conducts experiments a3 and solves mathematical problems about hydrostatics (the science of fluid balance) | Hydrostatics (the science of fluid balance) | Interactive lecture, brainstormin g, dialogue and discussion, field training, and self- learning | Short
daily
test1
Semester
test1
Final test | | 3 | 2 theoretical | c1 enumerates the types of
pressure gauges and knows how
each type works | Pressure measuring devices | Interactive lecture, brainstormin g, dialogue and discussion, self-learning | Short
daily
test1
Semester
test1
Final tes | | | 3 Practical | c4the student conducts experiments a3 and solves mathematical problems about pressure measuring devices | Pressure measuring devices | Interactive lecture, brainstormin g, dialogue and discussion, field training, | Short
daily
test1
Semester
test1
Final test | | | | | | and self-
learning | 4 | |---|---------------|--|--|--|--| | 4 | 2 theoretical | a5 the student distinguishes the
laws and equations related to
the forces acting on flat and
inclined curved surfaces of
liquids | Forces acting on surfaces due to static fluid pressure | Interactive
lecture,
brainstormin
g, dialogue
and
discussion,
self-learning | Short
daily
test1
Semester
test1
Final test | | | 3 Practical | c4the student conducts experiments a3 it solves mathematical problems about the forces acting on surfaces in the case of a static fluid | Forces acting on surfaces due to static fluid pressure | Interactive lecture, brainstormin g, dialogue and discussion, field training, and self- learning | Short
daily
test1
Semester
test1
Final test | | 5 | 2 theoretical | a2 the student learns about the
equilibrium conditions for a
body completely or partially
immersed in a liquid | Equilibrium of submerged and floating bodies in a liquid (conditions of equilibrium) | Interactive
lecture,
brainstormin
g, dialogue
and
discussion,
self-learning | Short
daily
test1
Semester
test1
Final test | | | 3 Practical | c4the student conducts experiments a3 and solves mathematical problems about the balance of submerged bodies | Equilibrium of submerged and floating bodies in a liquid (conditions of equilibrium) | Interactive
lecture,
brainstormin
g, dialogue
and
discussion,
field training,
and self-
learning | Short
daily
test1
Semester
test1
Final test | | 6 | 2 theoretical | a2the student understands the
classifications of flow types for
fluids and how to derive the
continuity equation for fluid
flow | Fluid flow, flow classification, and continuity equation | Interactive
lecture,
brainstormin
g, dialogue
and
discussion,
self-learning | Short
daily
test1
Semester
test1
Final test | | | 3 Practical | c4the student conducts experiments a3 and solves mathematical problems about types of flow and the continuity equation for flow | Fluid flow, flow classification, and continuity equation | Interactive lecture, brainstormin g, dialogue and discussion, field training, and self- learning | Short
daily
test1
Semester
test1
Final test | | 7 | 2 theoretical | al the student knows the derivation of bernoulli's equation and its practical applications | Fluid flow and Bernoulli's equation | Interactive
lecture,
brainstormin
g, dialogue | Short
daily
test1 | كلية الزراعة وارسبات | | | | | and
discussion,
self-learning | Semester
test1
Final test | |----|---------------|---|---|--|--| | | 3 Practical | c4the student conducts
experiments
a3 and solves mathematical
problems about the bernoulli
equation and its applications | Fluid flow and Bernoulli's equation | Interactive lecture, brainstormin g, dialogue and discussion, field training, and self- learning | Short
daily
test1
Semester
test1
Final test | | 8 | 2 theoretical | c2 the student benefits from
machines and devices that work
on applications of the
momentum equation | Principles of momentum | Interactive
lecture,
brainstormin
g, dialogue
and
discussion,
self-learning | Short
daily
test1
Semester
test1
Final test | | | 3 Practical | c4the student conducts experiments a3 and solves mathematical problems about the momentum equation for steady flow and its applications | Principles of momentum | Interactive lecture, brainstormin g, dialogue and discussion, field training, and self-learning | Short
daily
test1
Semester
test1
Final test | | 9 | 2 theoretical | a2 the student learns how to
find the reynolds number and
how to use the darcy equation | The flow of liquid in pipes,
Reynolds' experiment, and
Darcy's equation | Interactive
lecture,
brainstormin
g, dialogue
and
discussion,
self-learning | Short
daily
test1
Semester
test1
Final test | | | 3 Practical | c4the student conducts experiments a3 solves mathematical problems about the reynolds number and the darcy equation | The flow of liquid in pipes,
Reynolds' experiment, and
Darcy's equation | Interactive lecture, brainstormin g, dialogue and discussion, field training, and self-learning | Short
daily
test1
Semester
test1
Final test | | 10 | 2 theoretical | a4the student explains how to
find the marginal roughness
coefficient for pipes and the
coefficient of friction for types
of flow | Fluid flow and study of losses
through pipes due to friction | Interactive lecture, brainstormin g, dialogue and discussion, self-learning | Short
daily
test1
Semester
test1
Final test | | | 3 Practical | c4the student conducts experiments | Fluid flow and study of losses
through pipes due to friction | Interactive
lecture,
brainstormin | Short
daily
test1 | | | | a3 and solves mathematical
problems about the coefficient
of friction and marginal
roughness | | g, dialogue
and
discussion,
field training,
and self-
learning | Semester
test1
Final test | |----|---------------|---|---|--|--| | 11 | 2 theoretical | c1 the student enumerates the
laws and equations related to
the various losses resulting from
flow in pipes | Fluid flow and study of losses
through pipes | Interactive
lecture,
brainstormin
g, dialogue
and
discussion,
self-learning | Short
daily
test1
Semester
test1
Final test | | | 3 Practical | c4the student conducts experiments a3 and solves mathematical problems about charge loss as a result of flow in its various states | Fluid flow and study of losses
through pipes | Interactive lecture, brainstormin g, dialogue and discussion, field training, and self- learning | Short
daily
test1
Semester
test1
Final test | | 12 | 2 theoretical | a1 the student knows the laws
for equivalent pipe and tank
emptying | Flow in a pipeline | Interactive
lecture,
brainstormin
g, dialogue
and
discussion,
self-learning | Short
daily
test1
Semester
test1
Final test | | | 3 Practical | c4the student conducts experiments a3 solves mathematical problems about flow in a pipeline | Flow in a pipeline | Interactive lecture, brainstormin g, dialogue and discussion, field training, and self- learning | Short
daily
test1
Semester
test1 !
Final test | | 13 | 2 theoretical | a2the student understands and
knows the principles used in
classifying pumps in general
and centrifugal pumps in
particular | Types of pumps and centrifugal pumps | Interactive lecture, brainstormin g, dialogue and discussion, self-learning | Short
daily
test1
Semester
test1
Final test | | | 3 Practical | c4the student conducts experiments a3 and solves mathematical problems about the velocity trigonometry diagram of a centrifugal pump | Types of pumps and centrifugal pumps | Interactive lecture, brainstormin g, dialogue and discussion, field training, and self- learning | Short
daily
test1
Semester
test1
Final test | | 14 | | a2 the student understands
everything related to the
performance and operation of
centrifugal pumps | Performance of centrifugal pumps | lecture,
brainstormin
g, dialogue | Short daily test1 Semester test1 Final test | |----|---------------|---|---|--|--| | | 3 Practical | c4the student conducts experiments a3 and solves mathematical problems about the performance of centrifugal pumps | Performance of centrifugal pumps | Interactive lecture, brainstormin g, dialogue and discussion, field training, and self- learning | Short
daily
test1
Semester
test1
Final test | | 15 | 2 theoretical | a2 the student understands and
knows the types of positive
displacement pumps, their
operation and performance | Positive displacement pumps (reciprocating and rotary) | Interactive lecture, brainstormin g, dialogue and discussion, self-learning | Short
daily
test1
Semester
test1
Final test | | | 3 Practical | c4 the student conducts
experiments and solves
mathematical problems a3
about positive displacement
pumps | Positive displacement pumps
(reciprocating and rotary) | Interactive lecture, brainstormin g, dialogue and discussion, field training, and self- learning | Short
daily
test1
Semester
test1
Final tes | | 11. | Course Evaluation | date | marks | Relative | |------|------------------------|-------------------|---------------|----------| | Seq. | Evaluating style | uate | DATE STATE OF | weight | | | | | 10 | 10% | | 1 | Home reports | every week | 10 | 10% | | 2 | Short tests | every week | 10 | 10% | | 3 | Semester test 1 | The seventh week | 10 | 10% | | 4 | Semester test 2 | The final week | 20 | 20% | | 5 | Final practical test | End of the course | 40 | 40% | | 6 | Final theoretical test | End of the course | 100 | 100% | | | the total | | 100 | | | 11. Learning and Teaching Resources | - ميكانيك الموانع الدكتور ياسين هاشم الطحان و المهندس عبد الصابر ابراهيم
ك احامة المدمل 2000 | |---|--| | Required textbooks (curricular books, if any) | 1990 كربيسة الموصل | | Main references (sources) | يكانيك الموانع وتطبيقاتها الهندسية , روبرت ل.دوجرتي
جوزيف ب.فرانزيني . دار ماكرو هيل للنشر 1977
منازع الله النائية . | | Recommended books and references (scientific journals, reports) | - ميكاتيكا الموانع والهيدروليكا, رينالد ف.جايلز. دار ماكروهيل للنشر 1977
حاد عن الم | | | 2-ميكانيك الموانع ترجمة الدكتور نبيل زكي مرقص و الدكتور فوزي HFVHIDL
صادق/ 1984 | |---------------------------------|--| | | 3-Hydraulics and fluid Mechanics .Dr.P.N.Mody
,M.SETH,17th edition .2009 | | Flectronic References, Websites | https://www.youtube.com | مدرس المادة (عملي مرم صلح صبري علي رنيس قسم المكثّل في المتوال موايد المرابع المكثّل في المتوال موايد المرابع ال الكانز والالات الزراعية مدرس المادة النظري م.أحمد محمدأمين سعيد رنيس اللجنا العلمية أ.د. أركان محمد مين صديق