Course Description Form 1. Course Name: Design and Analysis of Agricultural Experiment 2. Course Code: #### DAAE302 3. Semester / Year: 2023 - 2024 Second Semester (Spring). 4. Description Preparation Date: 1 / 2 / 2024 5. Available Attendance Forms: Attendance 6. Number of Credit Hours (Total) / Number of Units (Total) 75 hours (2 theoretical, 3 practical) / 3.5 units 7. Course administrator's name (mention all, if more than one name) Name: Khalid Mohammed Dawod / Ahmed Majeed Abdulaah Email: khalid.dawod@uomosul.edu.iq / ahmed3079@uomosul.edu.iq ### 8. Course Objectives #### Course Objectives - Enable the student to understand, comprehend and identify the types of designs used in agricultural experiments. - Selection of results after analysis to reach superior coefficients. - Identify the types of tests that are performed before and after the experiment ### 9. Teaching and Learning Strategies ### Strategy - Interactive lectures. - Dialogue and discussion. - Brainstorming. - Reports and homework. - Scientific visits. #### 10. Course Structure | Week | Hours | Code | Required Learning
Outcomes | Unit or subject name | Learning method | Evaluation method | |------|-----------------|---|-------------------------------|----------------------------|---|-------------------| | 1 | Theoretical (2) | al Recalls statistical symbols and measures of mediation and dispersion | | General statistical review | Interactive lecture and brainstorming, dialogue, and discussion | Quìz | | | Practical (3) | b5 Per
review | forms a general statistical | General statistical review | Interactive lecture and brainstorming, dialogue, and discussion | Quiz | | 2 | Theoretical (2) | b1 Shows the concept of experimental design and some definitions related to the design and analysis of experiments | definitions Full
random design.
complete random
sectors, and Latin
square | Interactive lecture and brainstorming, dialogue, and discussion | Quiz | |----|-----------------|--|--|---|----------------------| | | Practical (3) | a3 Recalls the types of designs used in agricultural experiments | Types of designs used in agricultural experiments | Interactive lecture and brainstorming, dialogue, and discussion | Quiz | | 3. | Theoretical (2) | c1 Demonstrates what a complete random design is | Complete Randomized
Design (CRD) | Interactive lecture and brainstorming, dialogue, and discussion | Quiz | | | Practical (3) | b6 the complete random design CRD | Complete Randomized
Design (CRD) | Interactive lecture and brainstorming, dialogue, and discussion | Quiz | | 4 | Theoretical (2) | c2 shows the equation of the mathematical model and estimates the components of the mathematical variance | Equation of the mathematical model and estimation of its components | Interactive lecture and brainstorming, dialogue, and discussion | Quiz | | | Practical (3) | c6 the components of variance | Variance Components | Interactive lecture and brainstorming, dialogue, and discussion | Quiz
Homework | | 5 | Theoretical (2) | d1 Demonstrates the advantages and disadvantages of designing complete random Blocks | Randomized Complete
Design | Interactive lecture and brainstorming, dialogue, and discussion | Quiz | | | Practical (3) | c7 Shows what is the design of complete random blocks RCBD | Randomized Complete
Design | Interactive lecture and brainstorming, dialogue, and discussion | Quiz
Homework | | 6 | Theoretical (2) | d2 Organizes and analyzes a table of statistical data | of contrast
components – missing
observations –
Relative efficiency of
design | Interactive lecture and brainstorming, dialogue, and discussion | 1 st Exam | | | Practical (3) | b7 Identifies methods of data collection and analysis statistically | Variation Components - Estimating Missing Observation Values - Estimating the Relative Efficiency of Design | Interactive lecture and brainstorming, dialogue, and discussion | 1 st Exam | | 7 | Theoretical (2) | b2 Enumerates the advantages and disadvantages of the Latin square | Latin Square Design | Interactive lecture and brainstorming, dialogue, and discussion | Quiz
Homework | | | Practical (3) | b8 Shows what is the design of the Latin LSD box | LSD Latin Square
Design | Interactive lecture and brainstorming, dialogue, and discussion | Quiz | | 8 | Theoretical (2) | a2 Explains how to use the three designs in field experiments | Visit the Field Crops
Department Research
Station to learn about
the designs used in the
experiments | Interactive lecture and brainstorming, dialogue, and discussion | Quiz
Homework | | | Practical (3) | c8 Visits the research station of the field crops department to learn about the designs used in agricultural experiments | Visit the field crops
research station to
learn about the designs
used in agricultural
experiments | Interactive lecture and brainstorming, dialogue, and discussion | Quiz | |) | Theoretical (2) | e3 Distinguish between methods of testing averages | of comparisons
between averages of
transactions | Interactive lecture and brainstorming, dialogue, and discussion | Quiz | | | Practical (3) | d5 Uses methods of testing and comparing averages | of testing and comparing averages | Interactive lecture and
brainstorming, dialogue, and
discussion | Quiz
Homework | | 10 | Theoretical (2) | d3 Shows what factorial experiments are and when to use | efficiency and lost
viewing of LSD
design | Interactive lecture and brainstorming, dialogue, and discussion | Quiz
Report | | | Practical (3) | c9 the first part of factor experiments | first part of factorial experiments | Interactive lecture and brainstorming, dialogue, and discussion | Quiz | | 11 | Theoretical (2) | b3 Explains factor experiments and what is the concept of interaction between factors | first part of factorial experiments | Interactive lecture and brainstorming, dialogue, and discussion | Quiz
Report | | | Practical (3) | d6 The second part of the factor experiments shows | second part of factorial experiments | Interactive lecture and brainstorming dialogue, and discussion | Quiz | | 12 | Theoretica | C4 Determines how data is collected
and tabulated for the purpose of
statistical analysis | second part of factorial experiments | Interactive lecture and brainstorming, dialogue, and discussion | Quiz | |----|------------------|---|---|---|----------------------| | | Practical (3) | b9 Suggests a method for collecting and analyzing data statistically | collection and analysis statistically | Interactive lecture and brainstorming, dialogue, and discussion | Quiz | | 13 | Theoretica 1 (2) | b4 Demonstrates the importance of interference in factorial experiments | Interaction in factor experiments | Interactive lecture and
brainstorming, dialogue, and
discussion | Quiz | | | Practical (3) | a4 Recognizes the overlap between
factors through a table of analysis of
variance and graph | Interaction between factors through Anova table and graph | Interactive lecture and
brainstorming, dialogue, and
discussion | Quiz | | 14 | Theoretica 1(2) | c5 Determines when to use splinter plate system factor experiments | Split-plot Experiments | Interactive lecture and brainstorming, dialogue, and discussion | 2 nd Exam | | | Practical (3) | a.5 experiments with splinter plate system | Split-plot Experiments | Interactive lecture and brainstorming, dialogue, and discussion | 2 nd Exam | | 15 | Theoretica 1 (2) | d4 Organizes a report on how to take measurements of traits | How to take
measurements of traits
and put them in tables | Interactive lecture and brainstorming, dialogue, and discussion | Discuss
reports | | | Practical (3) | b10 Writes a report on how measurements of traits are taken in the field and placed in tables | How to take
measurements of traits
in the field and put
them in tables | Interactive lecture and brainstorming, dialogue, and discussion | Discuss
reports | # 11. Course Evaluation | No. | Evaluation | Evaluation Date | Degrees | Relative weight | |-----|----------------------------------|----------------------------|---------|-----------------| | | Methods | (week) | | | | 1 | A report 1 | fourth week | 2.5 | 2.5 | | 2 | A report 2 | fifth week | 2.5 | 2.5 | | 3 | Short test (1) Quiz | sixth week | 2 | 2 | | 4 | Short test (2) Quiz | The fourteenth week | 2 | 2 | | 5 | Short test (3) | The fifteenth week | 1 | 1 | | 6 | semester test (1) | sixth week | 7.5 | 7.5 | | 7 | semester test (2) | eleventh week | 7.5 | 7.5 | | 8 | Final theoretical test | Final theoretical exam | 40 | 40 | | 9 | Practical field project | The fifteenth week | 5 | 5 | | 10 | Laboratory evaluation | third and fifth week | 2 | 2 | | 11 | Practical short test (1)
Quiz | First week | 1 | 1 | | 12 | Practical short test (2) Quiz | fourth week | 0.5 | 0.5 | | 13 | Practical short test (3) Quiz | The fourteenth week | 1 | 1 | | 14 | Live drawings and homework | 6,8,9,10,11,12,13
weeks | 5.5 | 5.5 | | 15 | Final practical test | Final practical exam | 20 | 20 | | | Total | | 100 | 100% | | 12. Learning and Teaching Resources | | | | | |---|---|--|--|--| | Required textbooks (curricular books, if any) | Book of Design and Analysis of Agricultural
Experiments - Khasha Mahmoud Al-Rawi and
Abdul Aziz Muhammad Khalaf Allah 2000 | | | | | Main references (sources) | Book of Statistical Methods in Agricultural
Experiments - Khaled Muhammad Dawood and
Zaki Abdel Elias 1990 | | | | | Recommended books and references (scientific journals, reports) | Lectures in Probability and Statistics: Lectures given
at the Winter School in Probability and Statistics
held in Santiago de Chile | | | | | Electronic References, Websites | https://www.statista.com/ | | | | Theoretical Lecturer Prof. Khaled Mohamed Dawod Practical Lecturer Mr. Ahmed Majeed Abdullah Head of the Scientific Committee Prof. Arkan Mohammed Ameen Sedeeq Head of Department Assitant Prof. Assist. Nofal Issa Mohamed