

MODULE DESCRIPTION FORM

	Module Inform	ation		
Module Title	ENGINEERING DRAWING	Module De	livery	
Module Type	S	⊠ 1	heory	
Module Code	END1030	 	.ecture .ab	
ECTS Credits	6		utorial	
SWL (hr/sem)	150		Practical Seminar	
Module Level	/ STATIS	Semester o	f Delivery	1
Administering Department	SSWR1969, PLPR1966, HOLA1974, FORE1964, FOSC1965, FICR1973, ANPR1964, AGEC1979, AETT1979, AGME1986	College	AGFO	1964
Module Leader	Alla Mohamed Abdullah Omar Dheyaa Mohammed Asmaa Mohammed Adil Moyassar Mohammed Aziz Nofal Issa Mohamed sumyia khalaf Badawi Firas Kadhim Dawoo Aljuboori Khaled Anwer Khaled ALKHALED Talal Saeed Hameed Muzahim Saeed Al-Bek	e-mail	ala.mohammed58@dr.omaralmallah@dasmaama@uomosumoyassar aziz@uomosumofelemh@uomosudr.sumyia_khalf@uomosumosaljuboori@uomkhalid.anwar31@uostalal1982@uomosumuzahim_saeed@u	iomosul.edu.iq il.edu.iq mosul.edu.iq l.edu.iq omosul.edu.iq iosul.edu.iq omosul.edu.iq
Module Leader's Acad. Title	Assistant Professor Professor	Module Lea	nder's Qualification	Ph.D. M.Sc.
Module Tutor	Saleh Sabry Ali	e-mail	Ssah69@uomosul.ed	du.iq
Peer Reviewer Name	Layth mahmood yahya	e-mail	laithmy@uomosul.e	du.iq

Scientific Committee Approval Date	15/10/2024	Version Number	1.0
--	------------	-------------------	-----

	Relation with other Modules		
Prerequisite module	None	Semester	
Co-requisites module	None	Semester	

	Module Aims, Learning Outcomes and Indicative Contents
Module Objectives	 To develop the Agricultural student's ability to imagine projections and their models. Exercising hand movement in engineering drawing to complete quick sketches. This course deals with the theory of Orthographic Projection and the basic subject of isometric drawing. To teach students engineering drawings using the AutoCAD program, which includes both theoretical lectures and labs.
Module Learning Outcomes	LO#1: Absorbing all the engineering characteristics of an object or a product in a clear manner. LO#2: Know the tools used in engineering drawing and how to use them correctly, LO#3: Understand and apply the basics of engineering processes. LO#4: Conclude projections and isometrics for each geometric figure and recognize its dimensions.
Indicative Contents	Indicative content includes the following. Part A: Engineering Drawing Basics and Tools Introduction and Definition of Engineering Drawing • Engineering Drawing Tools and Their Uses • Explanation of Sheet Dimensions, Information Table, and Letter Writing. • Types of Lines and Basic Geometric Operations: Introduction to different types of lines (continuous, dashed, center lines) and their specific uses in drawings. Performing basic geometric operations such as measuring, dividing, and marking. • Arcs and Tangents: Defining and drawing arcs and tangents in engineering drawings, including field applications. [20 hrs.] Classwork: Practical Applications of Previous Topics Hands-on practice applying learned techniques (lines, arcs, sheet setup) [4 hrs.]
	Part B: Engineering Projections and Operations:

- Engineering Projections: Understanding projection techniques, especially orthographic projections. Learning how to project an object's views from different angles.
 Mid-term Exam: Assessment covering the topics learned in Part A and initial projection skills.
 Deducing the Third Projection Based on Two Projections: Skill development in visualizing and drawing the third projection when given two views of an object. [12 hrs.]
- Classwork: Practical Applications of Deducing the Third Projection: Applying concepts learned in projection drawing. [4 hrs.]

Part C: Advanced Drawing Techniques and CAD Software

- Drawing Engineering Perspective (Isometric): Introduction to isometric drawing techniques.

 Drawing objects in isometric view for accurate 3D representation. Review of Isometric Engineering Perspective: Revisiting the principles of isometric drawing and its application in technical drawings.

 Understanding the connection between isometric drawings and orthographic projections. [8 hrs.]
- Introduction to Computer-Aided Drawing (CAD): Overview of computer-aided drawing, emphasizing its importance in modern engineering. Introduction to software tools like AutoCAD and SolidWorks, including their hardware components and versions. AutoCAD Interface and Main Commands: Learning the basic interface of AutoCAD, including the drawing and modification toolbar. Explanation of key commands and their uses. Drawing Simple Geometric Shapes Using AutoCAD: Hands-on practice with AutoCAD to draw basic geometric shapes. [12 hrs]

Total hrs = 63 = SSWL - (Exam hrs) = 63 - 3 = 60 hr (Time table hrs x 15 weeks)

Learning and Teaching Strategies

1. Lecture-based Teaching:

- Explaining concepts and demonstrating tools, techniques, and software in real time allows students to observe the process before applying it.
- 2. Hands-on Practice:

Strategies

- Lab Sessions: Providing practical sessions where students use drawing tools and software like AutoCAD or SolidWorks to develop their skills.
- Guided Exercises: Offering step-by-step instructions to complete tasks such as drawing isometric views or projections.

3. Interactive Class Discussions:

- Question and Answer Sessions: Actively engage students in discussions where they can ask
 questions and clarify doubts about topics like projection techniques or CAD tools.
- 4. Assessment and Evaluation:
 - Project-based Assessments: Assigning projects requiring students to apply the concepts they've learned, like creating detailed engineering drawings using manual and softwarebased techniques.

4...

	Student Work	kload (SWL)	
Structured SWL (h/sem)	63	Structured SWL (h/w)	4
Unstructured SWL (h/sem)	87	Unstructured SWL (h/w)	5.8
Total SWL (h/sem)		150	
//	16	1.01.6	

		Modu	le Evaluation		
A	s S	Time/Number	Weight (Marks)	Week Due	Relevant Learning Outcome
	Quizzes	1	10% (10)	7 🎥	
Formative	Assignments	10	20% (20)	3 to 14	0
assessment	Projects / Lab.	Pul	5% (5)	Continuous	All
	Reports	Per I	5% (5)	61,-	
Summative	Midterm Exam	2hr	10% (10)	7	LO #1, #2
assessment	Final Exam	3hr	50% (50)	16	All
	Total assessment		100% (100 Ma <mark>rks</mark>)		

	Delivery Plan (Weekly, Syllabus)
	Material Covered
Week 1	Introduction and definition of engineering drawing

	Delivery Plan (Weekly, Syllabus)
	Material Covered
Week 2	Engineering drawing tools and their uses, knowing types of pens used, Drawing board layout.
Week 3	Explanation of sheet dimensions, information table, and letter writing
Week 4	Types of lines, their applications, and basic geometric operations
Week 5	Arcs and tangents
Week 6	Classwork: Practical applications of previous topics
Week 7	Engineering projections
Week 8	Mid-term Exam
Week 9	Deducing the third projection based on the other two
Week 10	Classwork: Practical applications of deducing the third projection
Week 11	Drawing engineering perspective (isometric)
Week 12	Review of isometric engineering perspective and its relation to deducing the third projection
Week 13	Introduction to the importance of computer-aided drawing and the types of software used for engineering drawing, such as AutoCAD and SolidWorks, including their components and versions.
Week 14	Introduction to the AutoCAD interface and main commands: (Drawing toolbar and its uses, modification toolbar and its uses).

	Delivery Plan (Weekly, Syllabus)
	Material Covered
Week 15	Drawing simple geometric shapes using AutoCAD.
Week 16	Preparatory week before the Final Exam

	Delivery Plan (Weekly Practical Syllabus)
	Material Covered
Week 1	Familiarization with different drawing tools, including pens, and setting up the drawing board layout.
Week 2	Practice drawing sheets according to standard dimensions, setting up an information table, and writing technical letters.
Week 3	Identify different line types and execute basic geometric operations (e.g., drawing straight lines, circles).
Week 4	Practice drawing arcs and tangents using drawing tools.
Week 5	Consolidate skills by applying learned techniques (lines, arcs, tangents) in a project or assignment.
Week 6	Start drawing orthographic projections of simple objects, projecting different views.
Week 7	Assessment based on skills acquired in previous weeks, focusing on projections, lines, and geometric operations.
Week 8	Visualize and draw the third projection based on two given views.

Week 9	Work on exercises that reinforce the ability to deduce the third projection, applying this to different objects.
Week 10	Learn to draw isometric projections, emphasizing proper axis alignment and scaling.
Week 11	Review and reinforce isometric drawing techniques and their connection to orthographic projections.
Week 12	Introduction to AutoCAD and SolidWorks; learning the basic interface, including drawing and modification toolbars.
Week 13	Practice using the AutoCAD interface, focusing on drawing commands (e.g., lines, circles) and modification commands (e.g., trim, extend).
Week 14	Create simple geometric drawings using AutoCAD, including 2D shapes like squares, rectangles, and circles.
Week 15	Work on exercises that reinforce the ability to Create simple geometric drawings using AutoCAD.

Week 13	anun	nodification commands (e.g., trim, extend).	
Week 14		imple geometric drawings using AutoCAD, including 20 ngles, and circles.	Shapes like squares,
Week 15	Work on Auto(exercises that reinforce the ability to Create simple geo CAD.	ometric drawings using
		1 9m 10 10 10 10 10 10 10 10 10 10 10 10 10	
		Learning and Teaching Resources	Available in the Library
		Learning and Teaching Resources Text	Available in the Library?
Required T	exts		Available in the Library? Yes
Required T		Text	

Grading Scheme						
Group	Grade	Grade	Marks %	Definition		
Success Group	A - Excellent	Excellent	90 - 100	Outstanding Performance		

(50 - 100)	B - Very Good	Very Good	80 - 89	Above average with some errors
	C - Good	Good	70 - 79	Sound work with notable errors
	D - Satisfactory	Average	60 - 69	Fair but with major shortcomings
	E - Sufficient	Acceptable	50 - 59	Work meets minimum criteria
Fail Group	FX – Fail	Fail (in process)	(45-49)	More work is required but credit awarded
(0 – 49)	F – Fail	Fail	(0-44)	Considerable amount of work required

Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example, a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.

Chairman Scientific Committee:

prof.Dr. Kais Nazem Ghazal

The Signature

Head of the Department

Or Zuwaid Fathi Abo