Course Description Form

1. Course Name: Soil Minerals 2. Course Code: SOM1356 Semester / Year: The Second Spring Semester 4. Description Preparation Date: 2025/2/1 Available Attendance Forms: My presence + electronic Number of Credit Hours (Total) / Number of Units (Total) 2 theortical +3 prtical /3.5 units Course administrator's name (mention all, if more than one name) Name: Abdalkader Absh Sbak Email: dr.abdalkaderabshsbak@uomosul.edu.iq Name: Ahmed Sameer Ghanim Email: ahmedaltaay1986@uomosul.edu.iq Course Objectives Course Objectives practical; Enabling the student to recognize the most Theoretical: important methods of detection Identification of clay minerals and procedures Enabling the student to understand for diagnosing minerals And comprehend the relationship Enable the student to identify the crystalline Between the crystal and its systems structure of minerals And axes Enabling the student to know the structural composition of silicate minerals Enabling the student to understand and know the most important structural properties of minerals 4- Identify the transformations that occur in clay minerals Teaching and Learning Strategies STRINGY practical: Assigning group work to Theoretical: - The lecture is interactive reveal

- Brainstorming

- Dialogue and discussion

- Assigning tasks and reporting

- Presentations of models of clay samples mounted or slides

The student is assigned to prepare a report entitled from his own diligence and prepare it for discussion With the students

skills

Leadership

 Assigning tasks and reporting for each experiment

10. Course Structure

Week	Hours	Required Learning	Unit or subject	Learning	Evaluation
		Outcomes	name	method	method
1	2Theoretical	A1: The student identifies to most important rocks that make up the Earth's crust. B1: The student distinguish between types of rocks (igneous, sedimentary, metamorphic). B2: The student distinguish between chemical and physical weathering.	Mineral compositi of the Earth's cru		Midterm Exam 1, Final Exam
	3practical	C7: The student collects various soil samples. C8: Grinds and sieves soil samples. C9: Prepares soil samples formineral analysis.	Preparing soil samples for miner analysis	Interactive lectu brainstorming, dialogue and discussion, field training, self- learning	Short practical t
	2Theoretical	A2: The student identifies t main parts of a crystal. C1: The student describes crystal axes with a diagram	Crystal structure of minerals	Interactive lectrobrainstorming, dialogue discussion, s learning	Midterm Exam 1, Final Exam
2	3practical	C10: The student uses the siphon method to separate t clay from the other separate	Cray separation	Interactive lectu brainstorming, dialogue and discussion, field training, self- learning	direct drawing
3	2Theoretical	A3: The student differential between crystal systems by the number of faces, axis length, and interfacial angle A4: The learner differential between cubic, hexagonal, trigonal crystal systems, well as monoclinic and tricking trystal systems.	Crystal systems	Interactive lecture brainstorming, dialogue discussion, so learning	

	2 practical	C11: The learner uses distil	Removal of dissolv	Interactive lectu	Field evaluation
	3practical	water to wash the soil from salts.	salts	brainstorming, dialogue and discussion, field training, self- learning	
4	2Theoretical	B3: The student uses relationship between arrangement of atoms to make up a mineral crystal. Determine the type of bond the strength and hardness of mineral.	Structural composition of minerals	brainstorming, dialogue discussion, s learning	Final Exam, Report
	3practical	C12: The student removes carbonate minerals using H A12: The student uses a hydrogen peroxide solution remove organic matter.	Removal of calciur carbonate and orga matter	brainstorming, dialogue and discussion, field training, self- learning	2, Direct Drawii
5	2Theoretical	A5: The student is familiar with the most important rul governing the distribution of ions in the minerals of the Earth's crust. B4: The student distinguis silicate minerals based on type of structural unit.	Structural composition of silicate minerals	Interactive lecture brainstorming, dialogue discussion, selearning	Midterm Exam Final Exam, Report
	3practical	C13: The student uses DCB remove iron oxides from the clay separator.	Removal of iron oxides	Interactive lecture brainstorming, dialogue and discussion, field training, self-learning	Field evaluation
6	2Theoretical	B5: The student judges the type of clay mineral from a soil sample. B6: The student distinguis primary minerals fr secondary minerals by the resistance to weathering.		Interactive lector brainstorming, dialogue discussion, s learning	short test, final t
	3practical	B11: The student examines clay slices with an X-ray machine.	Preparing clay slice for examination	brainstorming, dialogue and discussion, field training, practice exercises, self- learning	homework
7	2Theoretical	A6: The student differential between silicate minerals		Interactive lecture brainstorming, dialogue	Midterm Exam 2, Final Exam

	1	the number of tetrahedral		discussion, s	
		octahedral units.		learning	
	3practical	Octanediai dints.	Mineralogical	Interactive lectu	Field Project
	Spractical		analysis of clay	brainstorming,	(Scientific Visit
			unarysis or eary	dialogue and	the College of
				discussion, field	
				training, practice	
				exercises, field	
				project, self-	
				learning (scienti	
				visit to the Colle	
				of Earth Science	
8	2Theoretical	B7: The student distinguish	non-silicate minera	Interactive lecti	Short
U		silicate minerals from non-		brainstorming,	exams,
		silicate minerals through		dialogue	assignments,
		silicon dioxide.		discussion, s	discussions
				learning	
	3practical	A14: Classify clay minerals	Practical application	Interactive lectu	Live drawing an
	•	during a magnesium saturat		brainstorming,	homework
		and air-drying treatment.	calculating clay	dialogue and	
		A15: Classify clay minerals	mineral ratios	discussion, field	
		during a magnesium saturat		training, practice	
		and ethylene glycol treatme		exercises, self-	
		A16: Classify clay minerals		learning	
	1	during a potassium saturation			
		and air-drying treatment.			
		A17: Classify clay minerals			
	1	during a potassium saturation			
		and heating at 350°C.			
		A18: Classify clay minerals			
		during a potassium saturation			
		and heating at 550°C.			
		A19: The student identifies			
		the types and proportions of			
		clay minerals in a soil samp			
9	2Theoretical	A7: The student understand	clay minerals	Interactive lecti	Midterm Exam
		the importance of clay		brainstorming,	Final Exam
		minerals.		dialogue	
		C2: The student judges		discussion, s	
		structural composition by the		learning	
		number of tetrahedral and			
		octahedral units.			
	3practical	A20: The student uses the			Live drawing an
		washing and sedimentation		brainstorming,	homework
		method to separate sand.		dialogue and	
450	72	A21: The learner uses a ligh	•	discussion, field	
1 - 1	Share all als	microscope to observe cryst		training, practica	
ب ا	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	of different colors and sizes		exercises, self-	
	124.3			learning	
1 2_	أ قسدم علسوم الترب				
6	كي والمسوار لمساليمة				
N /	1.27				

	2Theoretical	A8: The student classifies of minerals into crystalline and amorphous. B8: The student identifies expanded clay minerals with crystal dimension of 18 Angstroms.	classification	Interactive lector brainstorming, dialogue discussion, s learning	Term 2 Exam
10	3practical	A16: The student uses bromoform to separate coar sand from fine sand.	Separating light sar minerals from heav ones	brainstorming, dialogue and discussion, field training, practica exercises, self- learning	Live drawing ar homework
11	2Theoretical	A9: The student classifies kaolinite as a non-expansive mineral. C3: The student identifies kaolinite by its 7 Angstrom reflectance.	Clay minerals 1:1	Interactive lectrons brainstorming, dialogue discussion, solution learning	
	3practical	C14: The student uses cannabalsam to stabilize sar grains.	Preparing sand slid for analysis	Interactive lecture brainstorming, dialogue and discussion, field training, practice exercises, self-learning	homework
12	2Theoretical	A10: The student classifies smectite minerals as expans minerals. C4: The student identifies smectite minerals by their 1 Angstrom reflection.	Clay minerals 1:2 (expanded)	Interactive lector brainstorming, dialogue discussion, s learning	Final exam
	3practical	A22: The student identifies the type of charges through correction curves.		Interactive lecture brainstorming, dialogue and discussion, field training, practice exercises, self-learning	Live drawing ar homework
13	2Theoretical	C5: Mica appears hexagona under an electron microscop C6: The student identifies mica minerals by their lamellar structure.		Interactive lecter brainstorming, dialogue discussion, s learning	
معروب فأبات أ	3practical	A23: The student distinguishes between varia charges and permanent charges by the degree of interaction of the medium.		Interactive lecture brainstorming, dialogue and discussion, field training, practical discussion, field training, practical discussion.	Live drawing ar homework

						exercises, self- learning		
14	4 2Theoretical		chlorite b brucite la B9: The s chlorite b	student identifies by the constant ce in all parameters	Clay minerals 1:1:2	Interactive lector brainstorming, dialogue	short test, final	
	3pra	ctical	B13: The iron oxid	e student examines es extracted using materials.	Estimation of total iron oxides in soil	Interactive lecture brainstorming, dialogue and discussion, field training, practice exercises, self-learning	Short practical	
15	2The	eoretical	transforn minerals	e student judges the nations of clay by hydrothermal and weathering.	Clay mineral transformations	Interactive lecter brainstorming, dialogue discussion, s learning	short test, final	
	3practical		A24: The student uses an X device to examine crystallir iron oxides.		Estimation of Interactive 1		eld	
11.	Cour	se Evaluat Calendar r		Calendar dat	e degree	Relative we	eight	
1		Final the report + pexperience reports		My theory is 1 weeks My work is 1 weeks	6 practical	13%		
2		Short test	(1) Quiz	week (3)	4 theoretical + 2 practical	6%		
3		Midterm (theoretical)	Exam al and	week (9)	10 theoretical + 5 practical	15%		
4	ان ا	Short test	(2) Quiz	week (12)	4 theoretical + 2 practical	6%		

5	Final practical test	Practical exams week	20	20%
6	Final theoretical test	The week of theoretical exams	40	40%
	total		100	100%

Distributing the score out of 100 according to the tasks assigned to the student such as daily preparation, daily oral, monthly, or written exams, reports etc

12.	Learning	and	Teaching	Resources
-----	----------	-----	-----------------	-----------

Required textbooks (curricular books, if any)	Soil Chemistry book, written by Kazem Mashhout 1986
Main references (sources)	
Recommended books and references (scientific journals, reports)	The book (Soil Minerals) write by Prof. Dr. Salman is behind Iss
Electronic References, Websites	

dr. Abd Alkader Absh Sbak

Ahmed Samir Ghanem

Osama Hosam Fadl

Theoretical subject teacher

Practical subject teacher

dr. Abd Alkader Absh Sbak

Chair of Scientific Committee

dr. dr.Khalid Anwar Khalid

Head of the Department

