MODULE DESCRIPTION FORM

Module Information					
Module Title	Mathematics		Modu	ıle Delivery	
Module Type	Support or related learning activit	у		☑ Theory	
Module Code	MAT1010			□ Lecture □ Lab	
ECTS Credits	7				
SWL (hr/sem)	175			☐ Practical☐ Seminar	
Module Level	1	Semeste	r of De	livery	1
Administering Department	SSWR1969, PLPR1966, HOLA1974, FORE1964, FOSC1965, FICR1973, ANPR1964, AGEC1979, AETT1979, AGME1986	College	AG	GFO1964	
Module Leader	Alla Mohamed Abdullah Omar Dheyaa Mohammed Asmaa Mohammed Adil Moyassar Mohammed Aziz Nofal Issa Mohamed sumyia khalaf Badawi Firas Kadhim Dawoo Aljuboori Khaled Anwer Khaled ALKHALED Talal Saeed Hameed Muzahim Saeed Al-Bek	e-mail	dr. ass mo dr fir kh sta	ala.mohammed58@uomosul.edu.iq dr.omaralmallah@uomosul.edu.iq asmaama@uomosul.edu.iq moyassar aziz@uomosul.edu.iq nofelemh@uomosul.edu.iq dr.sumyia khalf@uomosul.edu.iq khalid.anwar31@uomosul.edu.iq stalal1982@uomosul.edu.iq muzahim saeed@uomosul.edu.iq	
Module Leader's Acad. Title	Professor Assistant Professor	Module	Module Leader's Qualification Ph.D. MSc.		
Module Tutor	N.A.	e-mail	N.	A.	
Peer Reviewer Name	N.A.	e-mail N.A.			
Scientific Committee Approval Date	15/10/2024	Version Number		1.0	

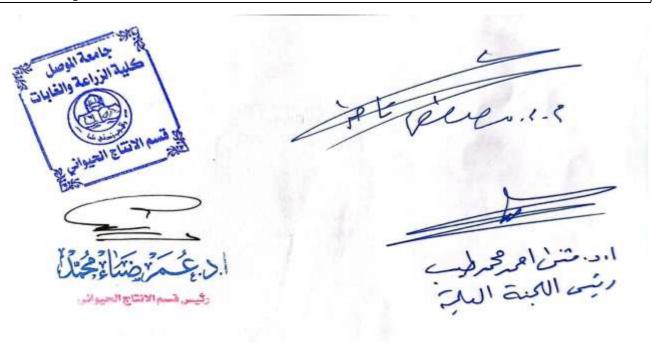
Relation with other Modules				
Prerequisite module	None	Semester		
Co-requisites module	None	Semester		

Module Aims, Learning Outcomes and Indicative Contents				
Module Objectives	 - To enable students to acquire proficiency in performing differential calculus operations. - In the field of calculus, the fundamental methodologies used to examine and describe functions are limits, derivatives, and integrals. - Students will use these tools to address application problems across a wide range of disciplines, including physics, biology, business, and economics. 			
Module Learning Outcomes	LO#1: The student uses understanding and of the basic concepts of engineering mathematics. LO#2: The student can develop his mental abilities when solving exercises. LO#3: The student can make connections with information mental abilities when solving exercises to reach a solution and benefit from it in other transactions.			
Indicative Contents	Indicative content includes the following. Theory and Tutorial: The focus will be on logarithms - the natural logarithm [SSWL=4 hrs], and applications and solutions will be taken for problems in the exponential function - the trigonometric function - trigonometric facts - complex angles [SSWL=4 hrs], and then the focus will be on differential calculus - derivative laws - derivatives from higher orders such as the equation of the straight line (tangent and perpendicular) and the derivative of trigonometric functions and the derivative of exponential functions - derivatives of logarithmic functions with applications on the derivative (velocity and acceleration) and applications on the derivative (points of inflection) and in hours [SSWL=24 hrs], then moving on to integration calculations - integration laws - definite integration and focusing on integration methods - integration by algebraic substitution - integration by parts and integration methods - integration by partial fractions and in hours [SSWL=12 hrs], then the focus will be on important applied aspects such as finding the area under the curve - the approximate method - by integration calculations and finding the area between two curves With applications of volume of a rotating body and numerical integration Trapezoidal rule and number of hours [SSWL=16 hrs]. .[SSWL=16 hrs] Trapezoidal rule Total hrs = 63 = SSWL - (Exam hrs) = 63 - 3 = 60 hr (Time table hrs x 15 weeks)			

Learning and Teaching Strategies			
Strategies	Quizzes, Homework, Discussion and solving exercises within the lecture, student interaction		

Student Workload (SWL)				
Structured SWL (h/sem)	63	Structured SWL (h/w)	4	
Unstructured SWL (h/sem) 112		Unstructured SWL (h/w)	2	
Total SWL (h/sem)	175			

Module Evaluation						
	Time/Number Weight (Marks) Week Due Relevant Learning Outcome					
	Quizzes	2	10% (10)	6 and 9	LO #1, #2	
Formative	Assignments	2	10% (10)	3 and 10	All	
assessment	Tutorial	1	10% (10)	Continuous	All	
	Report	1	10% (10)	12	All	
Summative	Midterm Exam	2hr	10% (10)	7	All	
assessment	Final Exam	3hr	50% (50)	16	All	
Total assessment			100% (100 Marks)			


Delivery Plan (Weekly Theory Syllabus) المنهاج الاسبوعي النظري		
	Material Covered	
Week 1	Logarithms and natural logarithms	
Week 2	The exponential function - the trigonometric function - trigonometric facts compound angles	
Week 3	Differential Calculus - Laws of Derivatives - Higher Order Derivatives	
Week 4	Equation of a straight line (tangent and normal)	
Week 5	Derivative of trigonometric functions	
Week 6	Derivative of exponential functions - derivative of logarithmic functions	
Week 7	Midterm exam	
Week 8	Applications on the derivative (speed and acceleration)	
Week 9	Applications to the derivative (inflection points)	
Week 10	Introduction to integration calculations - laws of integration - definite integration	
Week 11	Integration methods - integration by algebraic substitution - integration by Part.	
Week 12	Integration methods - integration with partial fractions	
Week 13	Finding the area under the curve - the approximate method - using integration Calculations	
Week 14	Find the area under the curve	
Week 15	Volume of solid revolution and Numerical integrationTrapezoidal rule	
Week 16	Preparatory week before the final Exam	

Delivery Plan (Weekly Tutorial Syllabus)		
	Material Covered	
Week 1	Solving exercises and mathematical applications in logarithms and natural logarithms	
Week 2	Solving exercises and mathematical applications in the exponential function - the trigonometric function - trigonometric facts compound angles	
Week 3	Solving exercises and mathematical applications in differential Calculus - Laws of Derivatives - Higher Order Derivatives	
Week 4	Solving exercises and mathematical applications in equation of a straight line (tangent and normal)	
Week 5	Solving exercises and mathematical applications in derivative of trigonometric functions	
Week 6	Solving exercises and mathematical applications in derivative of exponential functions - derivative of logarithmic functions	
Week 7	Midterm exam	
Week 8	Solving exercises and mathematical applications in applications on the derivative (speed and acceleration)	
Week 9	Solving exercises and mathematical applications in applications to the derivative (inflection points)	
Week 10	Introduction to integration calculations - laws of integration - definite integration	
Week 11	Solving exercises and mathematical applications in integration methods - integration by algebraic substitution - integration by Part.	
Week 12	Solving exercises and mathematical applications in integration methods - integration with partial fractions	
Week 13	Solving exercises and mathematical applications in finding the area under the curve - the approximate method - using integration Calculations	
Week 14	Solving exercises and mathematical applications in find the area under the curve	
Week 15	Solving exercises and mathematical applications in volume of solid revolution and Numerical integrationTrapezoidal rule	
Week 16	Preparatory week before the final Exam	

Learning and Teaching Resources				
	Text Available in the Library?			
Required Texts	Mathematics for Machine Learning author M. P. Deisenroth, A. A. Faisal and C. S. Ong	No		
Recommended Texts	Mathematical Handbook of Formulas and Table 1300 Math Formulas	No		
Websites	https://mathblog.com/mathematics-books/			

Grading Scheme مخطط الدرجات					
Group	Grade	Marks %	Definition		
	A - Excellent	90 - 100	Outstanding Performance		
	B - Very Good	80 - 89	Above average with some errors		
Success Group (50 - 100)	C – Good	70 - 79	Sound work with notable errors		
(30 - 100)	D - Satisfactory	60 - 69	Fair but with major shortcomings		
	E - Sufficient	50 - 59	Work meets minimum criteria		
Fail Group	FX – Fail	(45-49)	More work required but credit awarded		
(0 – 49)	F – Fail	(0-44)	Considerable amount of work required		

Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.

