MODULE DESCRIPTION FORM

dawyl Baledl Cauog Zd 903

Module Information
Loy 1 B3ledl o glas

Module Title Information Technology Basics | Module Delivery

Module Type Basic Theory

Module Code NT101 X Lecture
X Lab

ECTS Credits 6

O Tutorial

SWL (hr/sem) 150 O Practical

O Seminar

Module Level Semester of Delivery

Administering Department College CSM

Module Leader Name e-mail E-mail

Module Leader’s Acad. Title Professor Module Leader’s Qualification

Module Tutor Name (if available) e-mail E-mail

Peer Reviewer Name Name e-mail E-mail

Scientific Committee Approval Date 18/06/2023 Version Number

Relation with other Modules

63 duwslyll Sl gall ae A3Mall

Prerequisite module Semester

Co-requisites module Semester

Module Aims, Learning Outcomes and Indicative Contents

oLVl Gbgizally platdl g5l 9 duwshy) B3l)l Glaa]

Module Learning
Outcomes

ER{WNUPN L RUIESC S
doly

This course introduces students to the essential technical and professional skills
required in the field of Information Technology (IT). Through written
assignments, students gain an understanding of the operation of computers,
computer networks, Internet fundamentals, programming, and computer
support. We hope the students also learn about the social impact of
technological change and the ethical issues related to technology. Throughout
the course, instructional activities emphasize safety, professionalism,
accountability, and eefficiency for workers within the eld of IT. Indeed, this
course of an Information Technology under Network Department cover the
infrastructure model of information technology discipline that deals with the
computation of hardware and software, involving other programming
languages, which form an essential part of Information Technology. Therefore,
the course offers overview in various elds for information technology in terms
of computer networks such as Data Science, Cloud Computing, Software
Engineering, and also Artificial Intelligence, Machine Learning, Block-chain
Engineering, etc.

1. looking forward to taking up a profession in Information Technology
can take this course. Comprehension of Computer Systems: Understand
the components of a computer system, including hardware and
software, and how they interact to perform tasks.

Proficiency in Operating Systems: Install, configure, and manage
operating systems, perform file management operations, and utilize
basic system administration tasks.

Knowledge of Networks and Connectivity: Explain network
architectures, protocols, and technologies, and demonstrate the ability to
set up basic networks, configure IP addresses, and understand data
transmission concepts.

Practical Skills Application: Utilize hands-on exercises and practical
assignments to apply theoretical concepts, including computer hardware
installation, software setup, network configuration, and basic
programming tasks.

Understanding of Professional Ethics and Communication: Identify
ethical considerations in the IT field, including privacy, intellectual
property, and responsible technology use. Exhibit effective
communication skills for collaboration and documentation purposes.

Indicative Contents

dyoliy VI Obgisal

The indicative contents of the IT basics course for the computer department
may include the following topics:

1. Introduction to Information Technology:

o Definition and scope of information technology

o

o

Evolution and impact of IT on society and businesses

Ethical considerations and challenges in IT

2. Computer Systems and Hardware:

o

o

o

Components of a computer system (CPU, memory, storage,
input/output devices)

Computer organization and architecture

Digital data representation (binary, hexadecimal)

3. Operating Systems:

o

o

o

o

Functions and types of operating systems (e.g., Windows,
macOS, Linux)

Process management and multitasking
Memory management and virtual memory

File systems and file management

4. Software and Applications Development:

o

Programming languages and their characteristics (e.g., Java,
Python, C++)

Algorithms and problem-solving techniques

Introduction to software development methodologies (e.g.,
waterfall, agile)

5. Networking Fundamentals:

o

o

o

o

Network topologies (e.g., bus, star, mesh)
Network protocols (e.g., TCP/IP, HTTP, DNS)
Local area networks (LANSs) and wide area networks (WANS)

Network security and basic concepts of cybersecurity

6. Database Systems:

o

o

o

o

Introduction to database management systems (DBMYS)

Relational database concepts and design principles

Structured Query Language (SQL) for data manipulation and
retrieval

Basic database administration tasks and data integrity

7. Web Technologies:

o

Basics of web development (HTML, CSS, JavaScript)

o Client-server architecture and web application deployment
o Web design principles and usability considerations
o Introduction to content management systems (CMS)
8. Information Security:
o Fundamentals of information security and data protection
o Common security threats and vulnerabilities
o Authentication and access control mechanisms
o Encryption and cryptographic techniques
9. Emerging Technologies:
o Cloud computing and virtualization
o Atrtificial intelligence and machine learning
o Big data analytics and data science
o Internet of Things (IoT) and its applications
10. Ethical and Legal Considerations:

o Ethical issues in IT, including privacy and responsible use of
technology

Intellectual property rights and copyright laws
Cybersecurity laws and regulations

Data protection and privacy laws (e.g., GDPR, CCPA)

Learning and Teaching Strategies

obailly alatll bl

Learning and teaching strategies for the IT basics course for the Network
department can include a combination of the following:

Strategies 1. Active Learning: Incorporate activities that engage students actively in
the learning process. This can include hands-on exercises, group
projects, case studies, and discussions. Encourage students to apply the
concepts they learn to real-world scenarios and problems.

Practical Exercises: Provide opportunities for students to practice and
apply their knowledge. Assign programming exercises, database design
projects, or networking simulations to reinforce understanding and
develop practical skills. Offer guidance and feedback during the
exercises to facilitate learning.

Real-World Examples: Use relevant and relatable examples from
various industries and domains to illustrate the application of IT
concepts. Demonstrate how technology is used in business processes,
healthcare, finance, or other fields to make the concepts more tangible
and meaningful.

Multimedia Resources: Supplement lectures and readings with
multimedia resources such as videos, interactive tutorials, online
demonstrations, and virtual labs. Visual and interactive content can help
students grasp complex concepts and engage different learning styles.

Guest Speakers and Industry Connections: Invite guest speakers from
the IT industry or academia to share their experiences, insights, and
real-world applications of IT concepts. Establish connections with
professionals working in the field to provide students with networking
opportunities and industry perspectives.

Problem-Solving and Critical Thinking: Emphasize problem-solving
and critical-thinking skills throughout the course. Encourage students to
analyze and evaluate information, think creatively, and propose
solutions to IT-related challenges. Pose thought-provoking questions
and scenarios to stimulate discussion and higher-level thinking.

Assessment Variety: Use a variety of assessment methods to evaluate
students' understanding and mastery of the concepts. This can include
quizzes, exams, projects, presentations, and portfolios. Incorporate both
individual and group assessments to encourage collaboration and
teamwork skKills.

Current and Emerging Trends: Introduce students to current trends and
emerging technologies in the field of information technology. Discuss
their impact, potential applications, and challenges. Encourage students
to explore and research these topics to stay updated with the evolving
IT landscape.

Ethical and Legal Considerations: Incorporate discussions and
assignments that focus on ethical and legal issues in IT. Promote
discussions on responsible use of technology, privacy concerns,
intellectual property rights, and cybersecurity ethics. Foster awareness
of the ethical implications of IT in society.

. Continuous Feedback and Support: Provide regular feedback on
students' progress, both during in-class activities and through
assignments. Offer opportunities for students to seek clarification and
ask questions. Create a supportive learning environment that encourages

open communication and collaboration.

These strategies promote active learning, practical application of knowledge,
and engagement with the subject matter. They cater to different learning styles
and encourage students to develop critical thinking, problem-solving, and
communication skills necessary for success in the IT field.

Student Workload (SWL)

Lcjg.«.d Vol P g0 ;,JUQ.U stb..\]\ gre]

Structured SWL (h/sem) Structured SWL (h/w)
63
Jsad)l I35 CJlall alaiall gwhydl ol s gassl Ual) @atiall (golyadl Jool

Unstructured SWL (h/sem) Unstructured SWL (h/w)

)l I el claiall 48 guhdll Jol bee gl JUal) latiall s gl Jomell

Total SWL (h/sem)
125
Jradll I3 LIl 1 bl o

Module Evaluation

. . Relevant Learning
Time/Number Weight (Marks) Week Due
Outcome

Quizzes 10% (10) 5and 10 LO #1, #2 and #10, #11

Formative Assignments 10% (10) 2and 12 | LO#3, #4 and #6, #7

assessment | projects / Lab. 10% (10) Continuous | All

Report 10% (10) 13 LO #5, #8 and #10

Summative Midterm Exam 10% (10) 7 LO #1 - #7

assessment

Final Exam 50% (50)

Total assessment 100% (100 Marks)

Delivery Plan (Weekly Syllabus)

bt (£ zlgial

Material Covered

Introduction to the basic concepts of Information Technology (IT) and their applications.

Understand the structure layers of the infrastructure model of Information technology
environment, especially about end-users, operating system, computer network,

and storage.

Computer Hardware

o Components of a computer system
e Input and output devices
o Computer peripherals and their functions

Computer Software

o Types of software: system software and application software
o Operating systems and their features
« Software installation and management

Practical Skills - Operating Systems Basic concepts under IT infrastructure model layers

« Installation and configuration of operating systems
« File management operations
e System administration tasks

End-users concept underlying infrastructure model

Networks and Connectivity-Basic concepts under IT infrastructure model layers

o Network architectures: LAN, WAN, WLAN
o Network protocols: TCP/IP, Ethernet, Wi-Fi

Networks and Connectivity Basic concepts under IT infrastructure model layers

o Network architectures: LAN, WAN, WLAN

e Network protocols: TCP/IP, Ethernet, Wi-Fi

Mid term Examination

Storage concept underlying infrastructure model

Introduction to Data Management Basic concepts under IT infrastructure model layers

o Basics of databases and data management systems

Introduction to Data Management Basic concepts under IT infrastructure model layers

o Structured Query Language (SQL)

Week 12

Introduction to Web Development Basic concepts under IT infrastructure model layers

¢ HTML and CSS fundamentals

Week 13

Introduction to Web Development Basic concepts under IT infrastructure layers

o Web page creation and design principles

Ethical Considerations Basic concepts under IT infrastructure layers

o Ethics inthe IT field: privacy, intellectual property, responsible technology use
o Professional communication and documentation skills

Week 15

Week 15: Review

« Review of key concepts covered throughout the course
o Completion of final projects or assignments demonstrating understanding of IT basics

Week 16

Preparatory week before the final Exam

Delivery Plan (Weekly Lab. Syllabus)
w3l (£909 zlgiel!

Material Covered

Operating System Installation and Configuration

o Objective: Enable students to install and configure an operating system.

o Activities: Students will install an operating system of their choice (e.g.,
Windows, Linux) on a virtual machine or physical computer. They will
configure settings, create user accounts, and explore basic system

administration tasks.

Week2 | |ntroduction to use the terminal of Ubuntu Operating System

Week 3 | Introduction to Ubuntu environment.

UL Introduction to the Shell

Week 5 Navigation

Week 6 Navigation

Week 7 | Exploring the System

Week 8 Mid term Exanimation

Week9 | Manipulating Files and Directories

Week 10 | Permissions

Week 11 | processes

Week 12 | Configuration and the Environment

Week 13 | Storage Media

Week 14 | Networking

Week 15 | Networking

Learning and Teaching Resources

wf).‘\.ﬂb {Q.\’JJ‘)JL‘AA

Text Available in the Library?

Required Texts No

Recommended

Texts

Websites

Grading Scheme

SESRey:

Grade el Marks % Definition

A - Excellent i 90-100 Outstanding Performance

B - Very Good 80-89 Above average with some errors
Success Group

C-Good e 70-79 Sound work with notable errors
(50 -100)

D - Satisfactory X 60— 69 Fair but with major shortcomings

E - Sufficient Jgsdn 50-59 Work meets minimum criteria

Fail Group FX - Fail (A laadl WB) Cly | (45-49) More work required but credit awarded

(0-49) F - Fail) (0-44) Considerable amount of work required

Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a
mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT
to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the
automatic rounding outlined above.

MODULE DESCRIPTION FORM

dwlyddl Balall Cavog C.)}w

Module Information
Lyl 83l ologlas

Module Title Information Technology Basics | Module Delivery

Module Type Basic Theory

Module Code NT101 X Lecture
X Lab

ECTS Credits 6

O Tutorial

SWL (hr/sem) 150 O] Practical

O Seminar

Module Level Semester of Delivery

Administering Department College CSM

Module Leader Name e-mail E-mail

Module Leader’s Acad. Title

Professor Module Leader’s Qualification

Module Tutor Name (if available) e-mail E-mail

Peer Reviewer Name

Name e-mail E-mail

Scientific Committee Approval Date 18/06/2023 Version Number

Relation with other Modules

631 dralyll Sl gall ae A8

Prerequisite module

Semester

Co-requisites module

Semester

Module Aims, Learning Outcomes and Indicative Contents

oLVl Sbgizally platdl 7559)l B3l)l laa

Module Learning
Outcomes

Soled) @lasdl Oolory3en
Aoy

This course introduces students to the essential technical and professional skills
required in the field of Information Technology (IT). Through written
assignments, students gain an understanding of the operation of computers,
computer networks, Internet fundamentals, programming, and computer
support. We hope the students also learn about the social impact of
technological change and the ethical issues related to technology. Throughout
the course, instructional activities emphasize safety, professionalism,
accountability, and eefficiency for workers within the eld of IT. Indeed, this
course of an Information Technology under Network Department cover the
infrastructure model of information technology discipline that deals with the
computation of hardware and software, involving other programming
languages, which form an essential part of Information Technology. Therefore,
the course offers overview in various elds for information technology in terms
of computer networks such as Data Science, Cloud Computing, Software
Engineering, and also Artificial Intelligence, Machine Learning, Block-chain
Engineering, etc.

2. looking forward to taking up a profession in Information Technology
can take this course. Comprehension of Computer Systems: Understand
the components of a computer system, including hardware and

software, and how they interact to perform tasks.

Proficiency in Operating Systems: Install, configure, and manage
operating systems, perform file management operations, and utilize
basic system administration tasks.

Knowledge of Networks and Connectivity: Explain network
architectures, protocols, and technologies, and demonstrate the ability to
set up basic networks, configure IP addresses, and understand data
transmission concepts.

Practical Skills Application: Utilize hands-on exercises and practical
assignments to apply theoretical concepts, including computer hardware
installation, software setup, network configuration, and basic
programming tasks.

Understanding of Professional Ethics and Communication: Identify
ethical considerations in the IT field, including privacy, intellectual
property, and responsible technology use. Exhibit effective
communication skills for collaboration and documentation purposes.

The indicative contents of the IT basics course for the computer department
may include the following topics:

11. Introduction to Information Technology:
o Definition and scope of information technology
o Evolution and impact of IT on society and businesses
o Ethical considerations and challenges in IT

12. Computer Systems and Hardware:

o Components of a computer system (CPU, memory, storage,
input/output devices)

Indicative Contents o Computer organization and architecture

Aol wlgizall o Digital data representation (binary, hexadecimal)

13. Operating Systems:

o Functions and types of operating systems (e.g., Windows,
macOS, Linux)

o Process management and multitasking
o Memory management and virtual memory
o File systems and file management

14. Software and Applications Development:

o Programming languages and their characteristics (e.g., Java,
Python, C++)

o Algorithms and problem-solving techniques

o Introduction to software development methodologies (e.g.,
waterfall, agile)

15. Networking Fundamentals:
o Network topologies (e.g., bus, star, mesh)
o Network protocols (e.g., TCP/IP, HTTP, DNS)
o Local area networks (LANs) and wide area networks (WANS)
o Network security and basic concepts of cybersecurity
16. Database Systems:
o Introduction to database management systems (DBMS)
o Relational database concepts and design principles

o Structured Query Language (SQL) for data manipulation and
retrieval

o Basic database administration tasks and data integrity
17. Web Technologies:
o Basics of web development (HTML, CSS, JavaScript)
o Client-server architecture and web application deployment

o Web design principles and usability considerations

o Introduction to content management systems (CMS)

18. Information Security:
o Fundamentals of information security and data protection
o Common security threats and vulnerabilities
o Authentication and access control mechanisms
o Encryption and cryptographic techniques
19. Emerging Technologies:
o Cloud computing and virtualization
o Atrtificial intelligence and machine learning
o Big data analytics and data science
o Internet of Things (IoT) and its applications
20. Ethical and Legal Considerations:

o Ethical issues in IT, including privacy and responsible use of
technology

o Intellectual property rights and copyright laws
o Cybersecurity laws and regulations

o Data protection and privacy laws (e.g., GDPR, CCPA)

Learning and Teaching Strategies

oy @l bl

Learning and teaching strategies for the IT basics course for the Network
department can include a combination of the following:

11. Active Learning: Incorporate activities that engage students actively in
the learning process. This can include hands-on exercises, group
projects, case studies, and discussions. Encourage students to apply the
concepts they learn to real-world scenarios and problems.

. Practical Exercises: Provide opportunities for students to practice and
apply their knowledge. Assign programming exercises, database design
projects, or networking simulations to reinforce understanding and
develop practical skills. Offer guidance and feedback during the
exercises to facilitate learning.

. Real-World Examples: Use relevant and relatable examples from

various industries and domains to illustrate the application of IT
Strategies concepts. Demonstrate how technology is used in business processes,
healthcare, finance, or other fields to make the concepts more tangible
and meaningful.

. Multimedia Resources: Supplement lectures and readings with
multimedia resources such as videos, interactive tutorials, online
demonstrations, and virtual labs. Visual and interactive content can help
students grasp complex concepts and engage different learning styles.

. Guest Speakers and Industry Connections: Invite guest speakers from
the IT industry or academia to share their experiences, insights, and
real-world applications of IT concepts. Establish connections with
professionals working in the field to provide students with networking
opportunities and industry perspectives.

. Problem-Solving and Critical Thinking: Emphasize problem-solving
and critical-thinking skills throughout the course. Encourage students to
analyze and evaluate information, think creatively, and propose

solutions to IT-related challenges. Pose thought-provoking questions
and scenarios to stimulate discussion and higher-level thinking.

. Assessment Variety: Use a variety of assessment methods to evaluate
students' understanding and mastery of the concepts. This can include
quizzes, exams, projects, presentations, and portfolios. Incorporate both
individual and group assessments to encourage collaboration and
teamwork skills.

. Current and Emerging Trends: Introduce students to current trends and
emerging technologies in the field of information technology. Discuss
their impact, potential applications, and challenges. Encourage students
to explore and research these topics to stay updated with the evolving
IT landscape.

. Ethical and Legal Considerations: Incorporate discussions and
assignments that focus on ethical and legal issues in IT. Promote
discussions on responsible use of technology, privacy concerns,
intellectual property rights, and cybersecurity ethics. Foster awareness
of the ethical implications of IT in society.

. Continuous Feedback and Support: Provide regular feedback on
students’ progress, both during in-class activities and through
assignments. Offer opportunities for students to seek clarification and
ask questions. Create a supportive learning environment that encourages
open communication and collaboration.

These strategies promote active learning, practical application of knowledge,
and engagement with the subject matter. They cater to different learning styles
and encourage students to develop critical thinking, problem-solving, and
communication skills necessary for success in the IT field.

Student Workload (SWL)

L gaunl 10 J Dgaumen lall gyl Jasell

Structured SWL (h/sem) Structured SWL (h/w)
63

deadl I CIlal) laiall guld] Jozn| e ol IUal) laziall (guydl ool

Unstructured SWL (h/sem) Unstructured SWL (h/w)

el s LIl elaziedl e (quhldl Joxdl b gl JUal) platiall s gubll Josrll

Total SWL (h/sem)
125
uadd! I CIlall (SSI1 (guyld! Jasel

Module Evaluation

. . Relevant Learning
Time/Number Weight (Marks) Week Due
Outcome

Quizzes 10% (10) 5and 10 LO #1, #2 and #10, #11

e Assignments 10% (10) 2and 12 LO #3, #4 and #6, #7

assessment | projects / Lab. 10% (10) Continuous | All

Report 10% (10) 13 LO #5, #8 and #10

Summative Midterm Exam 10% (10) 7 LO #1 - #7

assessment | poorE o 50% (50) All

Total assessment 100% (100 Marks)

Delivery Plan (Weekly Syllabus)

Sl (£ 5Il 7z lginll

Material Covered

Introduction to the basic concepts of Information Technology (IT) and their applications.

Understand the structure layers of the infrastructure model of Information technology
environment, especially about end-users, operating system, computer network,

and storage.

Computer Hardware

o Components of a computer system
e Input and output devices

o Computer peripherals and their functions

Computer Software

o Types of software: system software and application software
e Operating systems and their features
« Software installation and management

Practical Skills - Operating Systems Basic concepts under IT infrastructure model layers

« Installation and configuration of operating systems
o File management operations
o System administration tasks

End-users concept underlying infrastructure model

Networks and Connectivity-Basic concepts under IT infrastructure model layers

o Network architectures: LAN, WAN, WLAN
e Network protocols: TCP/IP, Ethernet, Wi-Fi

Networks and Connectivity Basic concepts under IT infrastructure model layers

o Network architectures: LAN, WAN, WLAN
e Network protocols: TCP/IP, Ethernet, Wi-Fi

Mid term Examination

Storage concept underlying infrastructure model

Introduction to Data Management Basic concepts under IT infrastructure model layers

» Basics of databases and data management systems

Week 11

Introduction to Data Management Basic concepts under IT infrastructure model layers

o Structured Query Language (SQL)

Introduction to Web Development Basic concepts under IT infrastructure model layers

e HTML and CSS fundamentals

Week 13

Introduction to Web Development Basic concepts under IT infrastructure layers

o Web page creation and design principles

Ethical Considerations Basic concepts under IT infrastructure layers

« Ethics inthe IT field: privacy, intellectual property, responsible technology use
e Professional communication and documentation skills

Week 15

Week 15: Review

e Review of key concepts covered throughout the course
o Completion of final projects or assignments demonstrating understanding of IT basics

Week 16

Preparatory week before the final Exam

Delivery Plan (Weekly Lab. Syllabus)

Material Covered

Operating System Installation and Configuration

o Objective: Enable students to install and configure an operating system.

o Activities: Students will install an operating system of their choice (e.g.,
Windows, Linux) on a virtual machine or physical computer. They will
configure settings, create user accounts, and explore basic system
administration tasks.

Week 2

Introduction to use the terminal of Ubuntu Operating System

Week 3

Introduction to Ubuntu environment.

Week 4

Introduction to the Shell

Week 5

Navigation

Week 6

Navigation

Week 7

Exploring the System

Week 8

Mid term Exanimation

Week 9

Manipulating Files and Directories

Week 10

Permissions

Week 11

Processes

Week 12 | Configuration and the Environment

Week 13 | Storage Media

Week 14 | Networking

Week 15 | Networking

Learning and Teaching Resources

wjdﬁb ‘olaﬂ\)bl.,ao

Text Available in the Library?

Required Texts No

Recommended

Texts

Websites

Grading Scheme

SES NN,

Grade Marks % Definition

A - Excellent) 90- 100 Outstanding Performance

B - Very Good 80-89 Above average with some errors
Success Group

C-Good > 70-79 Sound work with notable errors
(50 - 100)

D - Satisfactory 60 - 69 Fair but with major shortcomings

E - Sufficient - 50-59 Work meets minimum criteria

Fail Group FX - Fail (Alaadl WB) Cly | (45-49) More work required but credit awarded

(0-49) F - Fail el (0-44) Considerable amount of work required

Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a
mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT
to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the
automatic rounding outlined above.

MODULE DESCRIPTION FORM
dawyl Balell Cauog i ged

Module Information

daly 1 B3lall iloglase

Module Title

Calculus

Module Delivery

Module Type

Support

Theory

Module Code

NT103

X Lecture
X Lab

ECTS Credits

5

O Tutorial
O Practical

SWL (hr/sem)

125

O Seminar

Module Level

Semester of

Delivery

Administering Department

College

CSM

Module Leader Name

e-mail

E-mail

Module Leader’s Acad. Title

Professor

Module Lea

der’s Qualification

Module Tutor

Name (if available)

e-mail

E-mail

Peer Reviewer Name

Name

e-mail

E-mail

Scientific Committee Approval Date

01/06/2023

Version Number

Relation with other Modules

631 dralyll ol gall as A8

Prerequisite module

Semester

Co-requisites module

Semester

Module Aims, Learning Outcomes and Indicative Contents

Lol Yl Gbgizally platd] g5l 9 duwshy) B3l)l Claa]

Understanding Limits: Students should develop a clear understanding of limits
and their properties. They should be able to evaluate limits algebraically and
graphically and comprehend the concept of continuity.
Calculating Derivatives: Students should learn to compute derivatives using
basic rules, such as the power rule, product rule, quotient rule, and chain rule.
They should understand the interpretation of derivatives as rates of change and
be able to apply derivatives to solve problems involving optimization, related
rates, and approximations.
Analyzing Functions: Students should be able to analyze and interpret
functions using calculus tools. This includes determining intervals of increase
and decrease, finding local extrema, identifying points of inflection, and
sketching the graph of a function using differentiation.
Evaluating Integrals: Students should learn to evaluate definite and indefinite
.. integrals. They should understand the concept of antiderivatives, basic
Module ObJeCt'st integration rules, and techniques such as substitution and integration by parts.
duwlhydll Bolall COlua They should also be able to apply integrals to solve problems involving area,
average value, and basic differential equations.
Understanding the Fundamental Theorem of Calculus: Students should grasp
the concepts behind the Fundamental Theorem of Calculus and its
implications. They should be able to use the Fundamental Theorem of
Calculus to evaluate definite integrals and relate integrals to accumulation
functions.
Developing Problem-Solving Skills: Students should enhance their problem-
solving abilities by applying calculus concepts and techniques to a variety of
real-world and mathematical problems. They should develop logical
reasoning, critical thinking, and analytical skills to solve calculus problems
effectively.
Enhancing Mathematical Communication: Students should develop the ability
to communicate mathematical ideas and solutions clearly and effectively.
They should be able to express their reasoning, use appropriate mathematical
notation, and present their work in a well-organized manner.
Upon successful completion of the Calculus course for the Networks
department, students should be able to demonstrate the following learning
outcomes:

1. Knowledge and Understanding:
e Demonstrate a solid understanding of fundamental concepts in
calculus, including limits, derivatives, and integrals.
Module Learning e Explain the relationship between functions, limits, and continuity.
e Apply the concepts of calculus to solve problems related to rates of
change, optimization, and approximation.
2. Computational Skills:
Solad) @ladl Wil y5ee o Perform algebraic manipulations and simplify expressions involving
limits, derivatives, and integrals.
Compute limits of functions and evaluate derivatives using various
techniques, such as the power rule, chain rule, and product rule.
Solve problems involving optimization, related rates, and
approximations using calculus methods.
3. Application and Modeling:
e Apply calculus concepts to real-world scenarios and model various
physical and mathematical phenomena.
e Interpret and analyze graphs, tables, and equations representing

Outcomes

Laly !

functions and their derivatives.
e Use calculus to solve problems in areas such as physics, economics,
engineering, and biology.
Critical Thinking and Problem-Solving:
e Analyze and interpret problems to identify relevant mathematical
concepts and apply appropriate calculus technigues.
Develop logical reasoning and problem-solving strategies to solve
complex calculus problems.
Evaluate the reasonableness and accuracy of solutions and interpret
their implications in practical contexts.
Mathematical Communication:
o Express mathematical ideas and solutions clearly and accurately using
appropriate mathematical language and notation.
Communicate mathematical reasoning and solution processes
effectively through written explanations, diagrams, and graphs.
Present and communicate mathematical results in a coherent and
organized manner.
Mathematical Reasoning and Proof:
o Apply logical reasoning and mathematical proof techniques to justify
mathematical statements and results in calculus.
Understand and construct mathematical arguments, including proofs
of key calculus theorems and properties.
Recognize the importance of mathematical rigor and precision in
calculus reasoning.
Technology and Calculus Tools:
o Utilize technology, such as graphing calculators or computer software,
to aid in visualizing and analyzing calculus concepts.
Apply appropriate technological tools to perform numerical
computations, graph functions, and solve calculus problems.

Interpret and validate results obtained from technology tools in the
context of calculus applications.

Indicative Contents
dyoliny Yl wbgisall

The indicative contents of the Calculus course for the computer department may
include the following topics:

e Introduction to Calculus:
e Basic concepts of functions, including domain, range, and
graphing
e Types of functions (polynomial, exponential, logarithmic,
trigonometric)
e The concept of a limit and its properties
e Limits and Continuity:
o Evaluating limits algebraically and graphically
e Determining one-sided and infinite limits
e Continuity of functions and its properties
e Differentiation:
o Definition of the derivative and its interpretation as a rate of
change
Calculation of derivatives using basic rules (power rule, constant
rule, sum and difference rules)
Derivatives of trigonometric, exponential, and logarithmic
functions
Higher-order derivatives and their interpretation

Applications of Differentiation:
e Tangent lines and rates of change
e Optimization problems (finding maximum or minimum values)
¢ Related rates problems (finding rates of change of related
quantities)
e Approximation using differentials and linearization
Techniques of Differentiation:
e Product rule and quotient rule
e Chain rule for composite functions
¢ Implicit differentiation
o Derivatives of inverse trigonometric functions
Curve Sketching:
e Analysis of functions, including intervals of increase/decrease,
local extrema, and concavity
e Determining asymptotes, intercepts, and symmetry
e Sketching the graph of a function using differentiation and
critical points
Integration:
o Antiderivatives and indefinite integrals
o Definite integrals and their interpretation as areas
e Basic integration rules (power rule, sum and difference rules)
e Techniques of integration (substitution, integration by parts)
Applications of Integration:
e Calculation of areas between curves
e Determining the average value of a function
¢ Finding the area of a region bounded by curves
e Solving basic differential equations
Fundamental Theorem of Calculus:
e Statement and application of the Fundamental Theorem of
Calculus
¢ Evaluating definite integrals using the Fundamental Theorem of
Calculus
e Area under a curve and accumulation functions
Numerical Methods:
e Approximating definite integrals using numerical methods (e.g.,
midpoint rule, trapezoidal rule)
e Simpson's rule for numerical integration
e Applications of numerical methods in practical contexts.

Learning and Teaching Strategies

Learning and teaching strategies for the Wireless Sensor Networks course for
the Network department can include a combination of the following:

Strategies

1. Clear Explanation and Examples: Provide clear explanations of calculus
concepts, definitions, and theorems. Use relatable examples and step-

by-step solutions to illustrate the application of concepts and problem-
solving techniques.

Active Learning: Engage students in active learning experiences
through in-class activities, group discussions, and problem-solving
exercises. Encourage students to actively participate in the learning
process by asking questions, working through problems, and explaining
their reasoning.

Visual Representations: Utilize visual aids, such as graphs, diagrams,
and animations, to illustrate calculus concepts. Visual representations
can help students visualize functions, understand the geometric
interpretation of calculus concepts, and grasp complex ideas more
easily.

Real-world Applications: Relate calculus concepts to real-world
applications to make them more meaningful and relevant to students.
Show examples of how calculus is used in various fields, such as
physics, economics, engineering, and biology, to solve practical
problems and make predictions.

Practice and Feedback: Provide ample opportunities for students to
practice solving calculus problems. Assign homework exercises,
practice quizzes, and problem sets to reinforce understanding and
develop problem-solving skills. Offer constructive feedback on student
work to guide their learning and address common mistakes.

Technology Integration: Integrate technology tools, such as graphing
calculators, mathematical software, or online interactive resources, to
aid visualization, exploration, and computation in calculus.
Demonstrate how technology can be used to enhance understanding and
solve complex problems efficiently.

Conceptual Understanding: Emphasize the development of conceptual
understanding alongside procedural skills. Encourage students to reason
and explain concepts, connections, and theorems rather than relying
solely on memorization and algorithms.

Collaborative Learning: Promote collaborative learning environments
by incorporating group activities, peer discussions, and projects.
Encourage students to work together, exchange ideas, and explain
concepts to their peers. Collaborative learning can enhance problem-
solving skills, critical thinking, and communication.

Formative Assessment: Use formative assessment strategies, such as
quizzes, class discussions, and concept-check questions, to monitor
student progress and identify areas of difficulty. Provide timely
feedback to address misconceptions and guide further learning.

10. Office Hours and Support: Offer regular office hours and additional
support sessions to provide students with opportunities for individual or
small-group consultations. Address individual questions, clarify
concepts, and provide personalized guidance to students who may

require extra assistance.

Student Workload (SWL)

le guwol V0 J O guua CIUall ‘."9*")4-” gres)
Structured SWL (h/sem) 48 Structured SWL (h/w)
B! I3 LUl @laziall gwhll Jasd! L gueel Ul oazioll gyl Jasel
Unstructured SWL (h/sem) Unstructured SWL (h/w)
el U3 LIl elaziedl e (qwhdl Joxxdl bee gl JUal) platiall p& gl Josell
Total SWL (h/sem)

il M5 CIUal U1 gyl Jass)

125

Module Evaluation

Relevant Learning
Time/Number Weight (Marks) Week Due
Outcome

Quizzes 10% (10) 5and 10 LO #1, #2 and #10, #11

Formative Assignments 10% (10) 2and 12 LO #3, #4 and #6, #7

assessment Projects / Lab. 10% (10) Continuous | All

Report 10% (10) 13 LO #5, #8 and #10
Summative Midterm Exam 10% (10) 7 LO #1 - #7
assessment Final Exam 50% (50) 16 All

Total assessment 100% (100 Marks)

Delivery Plan (Weekly Syllabus)
Sl (£ 5udl zlginll

Material Covered

e General Review: Real number and their properties, intervals, inequalities,
Absolute value with its properties.

The Real Function and its graphs, domain and range.

Limits and continuity: definition, theorems, properties, types of limits.

Derivative of function: Theory of derivative, higher order derivative, Implicit
derivative, Chain rule.

The integral: definite and indefinite integrals and applications.

Week 6 Transcendental Functions: Exponential Function, Logarithmic Function with
derivatives and integrals

Week 7 Trigometric Function, Inverse Trigometric Function with derivatives and integrals

Week 8 Mid — Term Examination

Week 9 Matrices: definition, types and their operations

Determinants: definition, properties and applications, The Cofactor and the Inverse of
matrix by Cofactor, Grammar’s method

Week 10

Week 11 Laplace transformation: definition, examples

Week 12 Inverse Laplace transformation: definition, examples

Week 13 Series: definition, Taylor and Maclaurin series

Week 14 Fourier series

Week 15 Review the Course

Learning and Teaching Resources
w)w‘ﬁ ‘o.laﬂ\)bl.,m

Text Available in the Library?

Required Texts No

Recommended

Texts

Websites

Grading Scheme
QL?-)..U‘ Lo

Group Grade SRV Marks % Definition

A - Excellent H 90-100 Outstanding Performance

B - Very Good 80 -89 Above average with some errors

Success Group C-Good e 70-79 Sound work with notable errors

(50 - 100)
D - Satisfactory X 60 - 69 Fair but with major shortcomings

E - Sufficient I 50-59 Work meets minimum criteria

Fail Group FX - Fail (A laadl Wi8) cwoly | (45-49) More work required but credit awarded

(0-49) F - Fail sl (0-44) Considerable amount of work required

Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a
mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT
to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the
automatic rounding outlined above.

MODULE DESCRIPTION FORM
dawlydl Baledl Cauog 73903

Module Information
Loy 1 B3Ledl o glas

Module Title Logic Design Fundamentals | Module Delivery

Module Type Core Theory

X Lecture

Module Code NT104 X Lab

O Tutorial

ECTS Credits i O Practical

SWL (hr/sem) 175 O Seminar

Module Level Semester of Delivery

Administering Department College CSM

Module Leader Name e-mail E-mail

Module Leader’s Acad. Title Professor Module Leader’s Qualification

Module Tutor Name (if available) e-mail E-mail

Peer Reviewer Name Name e-mail E-mail

Scientific Committee Approval Date 18/06/2023 Version Number

Relation with other Modules

631 dralyll ol gall as A8

Prerequisite module Semester

Co-requisites module Semester

Module Aims, Learning Outcomes and Indicative Contents
LolinYl Olgizally platll g5l g Ayl Bkl Ll

Module Objectives
dulyud) Baledl Colual

1.

Understand the Basics of Digital Logic: Familiarize students with the
fundamental concepts of digital logic, including binary number systems, logic
gates, and Boolean algebra.

Learn Combinational Logic Design: Enable students to design and analyze
combinational logic circuits using logic gates, multiplexers, decoders, and
encoders. Develop skills in simplifying Boolean expressions and implementing
logic functions.

Explore Sequential Logic Design: Introduce students to sequential logic
circuits, including flip-flops, registers, and counters. Teach them to design
and analyze sequential circuits using state diagrams and transition tables.
Develop Skills in Boolean Algebra Manipulation: Teach students the principles
of Boolean algebra and logic simplification techniques, including Boolean
laws, De Morgan's theorem, and Karnaugh maps. Enable them to simplify
complex Boolean expressions.

Gain Proficiency in Circuit Analysis and Simulation: Provide students with the
ability to analyze and simulate digital circuits using appropriate software
tools. Help them understand the behavior of logic circuits and validate their
designs.

Apply Design Methodologies: Introduce students to structured design
methodologies for digital circuits, including the concept of hierarchical
design, module reuse, and design documentation practices.

Foster Problem-Solving and Critical Thinking Skills: Encourage students to
apply logical reasoning and critical thinking in solving complex problems
related to digital logic design. Develop their ability to break down problems
into smaller components and apply appropriate design techniques.

Enhance Practical Skills through Lab Exercises: Provide hands-on lab exercises
where students can design, implement, and test digital logic circuits using
hardware components and/or digital simulation software. Reinforce
theoretical concepts through practical application.

Foster Collaboration and Communication Skills: Promote teamwork and
effective communication skills through group projects and presentations.
Encourage students to collaborate on circuit design and problem-solving
activities.

Module Learning
Outcomes

8ol eladl Ol y3ee
|

Upon completing the course, students should be able to:

Understand the fundamental concepts of digital logic design, including binary
number systems, logic gates, and Boolean algebra.

Comprehend the principles and characteristics of combinational and
sequential logic circuits.

Explain the behavior and operation of various digital components, such as
flip-flops, registers, and counters.

Understand the different types of memory devices and programmable logic
devices.

Design and implement combinational logic circuits using logic gates,
multiplexers, decoders, and encoders.

Simplify Boolean expressions and optimize logic functions using Boolean
algebra and logic simplification techniques.

Design and analyze sequential logic circuits using state diagrams, transition
tables, and timing diagrams.
Implement digital circuits using programmable logic devices (PLDs) and
understand their programming and configuration.
Apply logical reasoning and critical thinking skills to solve problems related
to digital logic design.

. Design, implement, and test digital logic circuits using hardware components
and/or digital simulation software.

. Use appropriate software tools for circuit simulation, validation, and
analysis.

. Work effectively in teams to collaboratively design and implement digital
logic circuits.

. Collaborate and contribute to group projects and discussions related to
digital logic design.

The following are indicative contents that may be covered in the course:
1. Introduction to Digital Logic:

Number systems: binary, decimal, octal, and hexadecimal
Boolean algebra: logic operators, truth tables, and laws

Logic gates: AND, OR, NOT, XOR, NAND, NOR, and XNOR
gates

Combinational Logic Design:

Combinational circuits: design and analysis

o Boolean functions: expressions, canonical forms, and simplification
Indicative Contents techniques

Lol ©lgisall Karnaugh maps: truth table to K-map conversion and simplification
Implementation of combinational circuits using logic gates

Combinational Circuits:
Multiplexers: operation, design, and applications
Demultiplexers: operation, design, and applications
Encoders: operation, design, and applications
Decoders: operation, design, and applications

Sequential Logic Design:

- Flip-flops: SR, D, JK, and T flip-flops

Learning and Teaching Strategies

oabailly @latll lonlil

combin

21.

Strategies

Learning and teaching strategies for the Network department can include a

ation of the following:

Lectures: Engage students through informative lectures that cover
theoretical concepts and provide an overview of key topics. Use
multimedia resources, visuals, and real-world examples to enhance
understanding.

. Hands-on Labs: Provide practical lab sessions where students can apply

their knowledge and skills acquired in lectures. These labs can involve
hardware assembly, software installation, network configuration,
programming exercises, and troubleshooting.

. Group Discussions and Collaborative Learning: Encourage group

discussions and collaborative activities to foster interaction and
knowledge sharing among students. Assign group projects or case
studies that require teamwork and problem-solving.

. Guest Speakers and Industry Experts: Invite guest speakers from the

industry to share their experiences, insights, and the latest trends in the
IT field. This can provide students with a real-world perspective and
inspire them to explore various career paths.

. Online Resources and Multimedia: Utilize online resources, interactive

tutorials, and multimedia materials to supplement learning. This can
include video lectures, online quizzes, virtual labs, and interactive
modules.

. Assignments and Projects: Assign individual and group projects that

require students to apply their knowledge and skills to solve real-world
problems or complete practical tasks. This promotes critical thinking,
problem-solving, and practical application of concepts.

. Assessments and Feedback: Conduct regular assessments, quizzes, and

examinations to evaluate students' understanding of the course material.
Provide timely and constructive feedback to help students identify areas
of improvement.

. Online Discussion Forums and Communication Platforms: Establish

online discussion forums or communication platforms where students
can ask questions, share resources, and engage in discussions outside of
the classroom.

Student Workload (SWL)
LC—jg...w\ Vo & gneo g,JUa.,U stb..\.” L,L“"J‘

Structured SWL (h/sem)

Structured SWL (h/w)
Jaddl IS LIl elasiall (bl Josdl b gl (Ul @laiiall gyl Josnll

108

Unstructured SWL (h/sem)
deadl] I3 Clal) alaiiall pe (gl

9 Unstructured SWL (h/w)
Lol b gl Ilall platiall e oyl Jasel

Total SWL (h/sem)
Bl I3l LIUall JSI1 (guhydl Jonll

200

Module Evaluation

. . Relevant Learning
Time/Number Weight (Marks) Week Due
Outcome

Formative

assessment

Quizzes 5and 10 LO #1, #2 and #10, #11

Assignments 2and 12 LO #3, #4 and #6, #7

Projects / Lab. Continuous | All

Report 13 LO #5, #8 and #10

Summative

assessment

Midterm Exam 7 LO #1 - #7

Final Exam 50% (50) 16 All

Total assessment 100% (100 Marks)

Delivery Plan (Weekly Syllabus)

Sl (£ gl Zlgholl

Material Covered

Introduction to Digital Logic Design
- Digital logic levels and signals

Week 2-3

Introduction to Number systems
- Binary
- Decimal
- Octal
- Hexadecimal

Week 4-5

Introduction to logic gates and truth table (AND, OR, NOT, NAND, NOT, EX-OR, and EX-NOR)

Week 6

Boolean Algebra
- Boolean variables and expressions
- Boolean laws and theorems

Week 7

Simplification of Boolean expressions

Week 8-9

Combinational Logic Gate Circuits and truth tables

Week 10

Designing and analyzing combinational circuits

Week 11

Multiplexers and De-multiplexers

Week 12

Karnaugh maps and simplification techniques

Week 13

Arithmetic Circuits
- Binary addition and subtraction circuits

Week 14

Binary-coded decimal (BCD) and binary-to-BCD conversion

Week 15

Flip-Flops

Delivery Plan (Weekly Lab. Syllabus)

Material Covered

Introduction to Logic Gates (AND, OR,NOT, NAND, NOR, EX-OR, and EX-NOR)

Construct and verify the truth tables for basic logic gates (AND, OR, NOT).

Build logic gate circuits using breadboards and test their functionality.

Boolean Algebra and Logic Simplification
- Simplify Boolean expressions using Boolean algebra laws and theorems.

Implement simplified expressions using logic gates and verify the results.

Combinational Logic Circuits
- Design and implement a half-adder circuit using logic gates.

- Build a full-adder circuit and test its functionality.

- Design and construct a 4-bit binary adder-subtractor circuit.

- Build a BCD adder circuit and verify its functionality.

Week 9-10

Combinational Logic Design
- Design and build a 4-bit binary-to-BCD converter using combinational logic.

Week 11

- Construct and verify the functionality of a 4-bit magnitude comparator.

Week 12-
13

Multiplexers and Decoders
1. Build a 4-to-1 multiplexer and test its operation using different input combinations.

2. Design and construct a 3-to-8 decoder using basic logic gates.

Sequential Logic Circuits
- Construct and verify the functionality of a D flip-flop using basic components.

Learning and Teaching Resources

w).)&.!b M\)AL@.A
Text Available in the Library?

Select a comprehensive logic design textbook that covers the
fundamental concepts, principles, and techniques of digital
Required Texts logic design. Examples include "Digital Design" by M. Morris
Mano and Michael D. Ciletti or "Digital Logic and Computer
Design" by M. Morris Mano.

Recommended "Digital Design" by M. Morris Mano and Michael D. Ciletti Or

Texts "Digital Logic and Computer Design" by M. Morris Mano

Websites

Grading Scheme
Sl Jabases
Group Grade il Marks % Definition
A - Excellent) 90- 100 Outstanding Performance
B - Very Good 80 -89 Above average with some errors
C- Good > 70-79 Sound work with notable errors
D - Satisfactory X 60 - 69 Fair but with major shortcomings

Success Group
(50 - 100)

E - Sufficient y 50-59 Work meets minimum criteria
Fail Group FX - Fail (Adlaadl W8) Cly | (45-49) More work required but credit awarded
(0-49) F - Fail ol (0-44) Considerable amount of work required

Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a
mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT
to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the
automatic rounding outlined above.

MODULE DESCRIPTION FORM

duwyl Balell Cauo g i ged

Module Information
Loy 1 B3l o glas

Module Title Enghsh 1 Module Delivery

Module Type Support Theory
Lecture

Module Code UOM102 O Lab

O Tutorial
O Practical

SWL (hr/sem) 50 O Seminar

ECTS Credits 2

Module Level Semester of Delivery

Administering Department College CSM

Module Leader Name e-mail E-mail

Module Leader’s Acad. Title Module Leader’s Qualification

Module Tutor Name (if available) e-mail E-mail

Peer Reviewer Name Name e-mail E-mail

Scientific Committee Approval Date Version Number

Relation with other Modules

G391 Ayl sl gall ae A8

Prerequisite module Semester

Co-requisites module Semester

Module Aims, Learning Outcomes and Indicative Contents

oLVl Gbgizally platdl g5l 9 duhyldl B3ll laa]

1. Language Proficiency: Develop basic language proficiency in English,
including listening, speaking, reading, and writing skills.
2. Grammar: Understand and apply basic grammatical structures,

Module Objectives including parts of speech, sentence formation, verb tenses, subject-verb
agreement, and basic sentence patterns.

3. Vocabulary Building: Expand vocabulary through learning and
practicing common words, synonyms, antonyms, idioms, phrasal verbs,
and collocations.

Reading Comprehension: Improve reading skills by understanding main
ideas, supporting details, making inferences, and analyzing texts of

dulyl) Baladl Colua]

varying complexity.
Listening Comprehension: Enhance listening skills by understanding
spoken English, including conversations, lectures, and presentations,
and extracting key information.
Speaking Skills: Develop oral communication skills through practicing
pronunciation, participating in conversations, giving presentations, and
expressing opinions.
Writing Skills: Enhance writing abilities by practicing sentence
construction, paragraph development, descriptive writing, narrative
writing, and basic essay structure.
Cultural Awareness: Gain cultural understanding and appreciation
through exposure to English-language literature, media, and diverse
perspectives.
Study Skills: Develop effective study strategies, note-taking techniques,
and time management skills for English language learning.

10. Assessment: Demonstrate language proficiency through quizzes, tests,
presentations, writing assignments, and class participation.

Module Learning
Outcomes

ER{INUPN L RUIESCY
Aoy

Upon successful completion of the English 1 course for the Networks
department, students should be able to demonstrate the following learning
outcomes:

1. Demonstrate basic proficiency in listening, speaking, reading, and
writing skills in English.

2. Apply grammatical structures accurately to communicate effectively in
written and spoken English.
Expand their vocabulary and use appropriate words and phrases in
various contexts.
Comprehend and analyze written texts of different genres, including
articles, short stories, and essays.
Understand spoken English in various situations, such as conversations,
lectures, and presentations.
Engage in effective verbal communication, express opinions, and
participate in discussions.
Write clear and coherent sentences, paragraphs, and short essays using
proper organization and language conventions.
Develop cultural awareness and sensitivity to different cultural
perspectives reflected in English literature and media.
Apply effective study skills, including note-taking, time management,
and self-assessment techniques.

10. Demonstrate language proficiency through assessments, including
quizzes, exams, presentations, and writing assignments.

Indicative Contents
LUyl Olgisall

The indicative contents for the English 1 course may include the following
topics:

1. Introduction to English Language:
o Basic grammar rules and sentence structure
o Parts of speech: nouns, verbs, adjectives, adverbs, etc.
o Simple sentence construction and punctuation

2. Vocabulary Building:

o Commonly used words and expressions
o Word formation: prefixes, suffixes, and root words
o Synonyms, antonyms, and idiomatic expressions
Reading Comprehension:
o Developing reading skills through texts of varying difficulty
o Understanding main ideas, supporting details, and inference
o Practicing skimming and scanning techniques
. Writing Skills:
o Paragraph writing: topic sentences, supporting details, and
concluding sentences
o Sentence structure and paragraph coherence
Developing basic writing skills: descriptive, narrative, and
expository writing
Listening Skills:
o Listening to and understanding spoken English in different
contexts
o Note-taking and summarizing information from spoken sources
Developing listening comprehension through audio materials
and dialogues
Speaking Skills:
o Basic conversation skills: greetings, introductions, and simple
dialogues
o Pronunciation and intonation practice
o Participating in group discussions and oral presentations
Cultural Awareness:
o Exploring English-speaking countries and their cultures
o Understanding cultural differences and norms in communication
Language Practice and Activities:
o Role plays, pair work, and group activities to practice language
skills
o Language games, quizzes, and interactive exercises for
reinforcement

These indicative contents provide a general overview of the topics and skills
covered in the English 1 course, focusing on developing foundational language
skills in reading, writing, listening, and speaking.

Learning and Teaching Strategies

datlly @lazdl O] Aol

Strategies

The learning and teaching strategies for the English 1 course aim to create an
engaging and interactive learning environment where students can actively
participate and develop their language skills. Some effective strategies include:

1. Communicative Approach: Emphasizing the use of English for
meaningful communication, allowing students to practice and apply
language skills in real-life situations through role plays, pair work, and
group activities.

Task-based Learning: Providing students with practical tasks and
projects that require them to use English to achieve specific goals,
fostering critical thinking, problem-solving, and collaboration skills.
Multi-modal Learning: Integrating various learning resources such as
textbooks, audio recordings, videos, and online materials to cater to
different learning styles and enhance comprehension and language
acquisition.

Scaffolded Instruction: Breaking down complex language concepts into
manageable steps, providing clear instructions, and gradually increasing
the level of difficulty to ensure students' understanding and progress.
Formative Assessment: Implementing regular quizzes, assignments, and
in-class activities to gauge students' understanding and provide timely
feedback for improvement.

Technology Integration: Utilizing digital tools and resources, such as
language learning apps, online dictionaries, and multimedia platforms,
to enhance language practice, vocabulary acquisition, and listening
comprehension.

. Authentic Materials: Exposing students to authentic English materials,
such as news articles, short stories, and videos, to develop their reading
and listening skills and expose them to real-world language use.

Error Correction and Feedback: Providing constructive feedback and
error correction to guide students in improving their language accuracy
and fluency, both in written and spoken English.

Cultural Immersion: Incorporating cultural activities, discussions, and
projects to promote intercultural understanding and awareness of
different English-speaking cultures.

By employing these strategies, the English 1 course aims to create an engaging
and effective learning environment that fosters students' language proficiency,
confidence, and communication skills in English.

Student Workload (SWL)
Lcj.f.d Vo O gunmo g_,JUa.U stb.,\.” JA}L}‘

Structured SWL (h/sem)

Jradll I CIlall elasiall (bl Jos| e gl Ul @lasiall (gulydl Josell

2 Structured SWL (h/w)

Unstructured SWL (h/sem)

el U3 LIl elaziadl e (gwhdl Joxdl Lo gl Ul @latiall e gyl Josndl

43 Unstructured SWL (h/w)

Total SWL (h/sem)

sadll I3 CJlall S gyl Jan|

75

Module Evaluation

. . Relevant Learning
Time/Number Weight (Marks) Week Due
Outcome

Quizzes 5and 10 LO #1, #2 and #10, #11
Formative Assignments 2and 12 LO #3, #4 and #6, #7

assessment Projects / Lab. Continuous | All

Report 13 LO #5, #8 and #10
Summative Midterm Exam 7 LO #1 - #7
assessment Final Exam 50% (50) 16 All

Total assessment 100% (100 Marks)

Delivery Plan (Weekly Syllabus)

Sl (£ gl zlgiall

Material Covered

Week1 | \Week 1: Introduction to English 1, course overview, and language assessment.

Week2 | \Week 2: Grammar: Parts of speech, sentence structure, and basic sentence patterns.

week3 | Week 3: Vocabulary Building: Basic word formation, synonyms, antonyms, and context
clues.

weeka | Week 4: Reading Comprehension: Developing reading strategies, understanding main ideas,
and supporting details.

weeks | Week 5: Listening Comprehension: Listening for information, note-taking, and understanding
spoken dialogues.

week | Week 6: Speaking Skills: Introducing oneself, asking and answering questions, and
participating in simple conversations.

week7 | Week 7: Writing Skills: Sentence construction, paragraph development, and descriptive
writing.

Week8 | \\eek 8: Grammar: Verb tenses, subject-verb agreement, and verb forms.

Week9 | \Week 9: Vocabulary Expansion: Idioms, phrasal verbs, and collocations.

Week 10 | Week 10: Reading Comprehension: Inferring meaning, making predictions, and analyzing
texts.

Week 11 | Week 11: Listening Comprehension: ldentifying main ideas, understanding specific details,
and listening for inference.

week 12 | Week 12: Speaking Skills: Giving opinions, expressing agreement/disagreement, and
presenting short talks.

Week 13 | \\eek 13: Writing Skills: Narrative writing, writing emails, and basic essay structure.

Week 14 | \\/eek 14: Grammar: Modals, conditionals, and reported speech.

week 15 | Week 15: Review and Assessment: Recap of course topics, practice exercises, and final
assessment.

Preparatory week before the final Exam

Delivery Plan (Weekly Lab. Syllabus)
risall (£l Zlgiall

Material Covered

O

Learning and Teaching Resources
uﬂf)wb ‘oJ:.‘ZJ\)&L,a.o

Text Available in the Library?

Required Texts

Recommended

Texts
Websites

Grading Scheme

Group Grade INE:S Definition

A - Excellent H Outstanding Performance

B - Very Good Above average with some errors
C- Good e Sound work with notable errors

Success Group
(50 - 100)

D - Satisfactory i Fair but with major shortcomings

E - Sufficient v Work meets minimum criteria

Fail Group FX - Fail (A landl WB) Cunly More work required but credit awarded
(0-49) F - Fail ol Considerable amount of work required

Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a
mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT
to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the
automatic rounding outlined above.

MODULE DESCRIPTION FORM

Module Information
Lyl Ble)l lo glas

Module Title Democracy and Human Rights Module Delivery

Module Type S Theory
Lecture

Module Code UOM104 O Lab

2 O Tutorial
O Practical

SWL (hr/sem) 50 01 Seminar

ECTS Credits

Module Level Semester of Delivery

Administering Department College CsSM

Module Leader e-mail

Module Leader’s Acad. Title Module Leader’s Qualification

Module Tutor Name (if available) e-mail E-mail

Peer Reviewer Name Name e-mail E-mail

Scientific Committee Approval Date Version Number

Relation with other Modules

RGeS RNV PN P Y

Prerequisite module Semester

Co-requisites module Semester

Module Aims, Learning Outcomes and Indicative Contents

oLVl Gbgizally platdl 7559)il B3ll laa]

Module Objectives
dulyud) Baledl Colual

The course aims to introduce human rights in order to defend human dignity and
contribute to changing human life for the better regarding: change in values and
feelings - and change in behavior, as well as promoting the idea of social justice and
strengthening the link between the individual and the group and the state and its
institutions, and developing monitoring skills Violations, dealing with violators,
supporting the skills of understanding human rights issues, in addition to enhancing
ways to participate in public affairs - citizenship.

Module Learning
Outcomes

Soled) @lasdl Ol y3en
Ay

1. Human rights are a set of fundamental entitlements and freedoms
that are inherent to all individuals, regardless of their nationality,
race, gender, religion, or any other characteristic.

They are based on the principles of dignity, equality, and respect for
the inherent worth and value of every human being.

Indicative Contents
dyoliny Yl wbgisall

Human rights are universal, meaning they apply to everyone, everywhere, without
discrimination. They encompass civil, political, economic, social, and cultural rights,
and are often codified in international and national legal frameworks.

Civil and political rights include the right to life, liberty, and security of person;
freedom of expression, assembly, and association; the right to a fair trial; and
protection against torture, arbitrary arrest, and discrimination.

Learning and Teaching Strategies

il @hard] sl el

Strategies

Civil and political rights include the right to life, liberty, and security of person;
freedom of expression, assembly, and association; the right to a fair trial; and
protection against torture, arbitrary arrest, and discrimination.

Student Workload (SWL)
Lcwl Vo S gunmo g.,JUa.U wbv\.}‘ JA::J\

Structured SWL (h/sem)

il I3l LIl elaiedl (gulyldl ozl e gl Ul @lasiall (gulydl Josnll

~ Structured SWL (h/w)

Unstructured SWL (h/sem) Unstructured SWL (h/w)
)l I CIlall claiall 48 gubdll Jodl bee gl JUal) latiall s bl Jomell

Total SWL (h/sem)

50

Bl I3l LIUall 81 guhdl Jorll

Module Evaluation
VR IRV RN

Relevant Learning
Time/Number Weight (Marks) Week Due
Outcome

Quizzes 5and 10 LO #1, #2 and #10, #11

2

Formative Assignments 2 2and 12 LO #3, #4 and #6, #7
1
1

assessment Projects / Lab. Continuous | All

13 LO #5, #8 and #10
Summative Midterm Exam 2hr 7 LO #1 - #7
assessment Final Exam 3hr 50% (50) 16 All

Total assessment 100% (100 Marks)

Report

Delivery Plan (Weekly Syllabus)

Syl £ g zlgiall

Material Covered
Week 1 Sl “)wlélbjﬁj Ol Ggd> Hode
Week 2 Ollasally Casyailly dodsd) (oLl §ga>

Week 3 doladl Wbyl 1S gixe
Week 4 | dolal obyoel) dolall &, ol
Week5 | dola)l ©by=l §gilall pliadl
Week 6 | 4ol &)=l llas
Week 7 dolal &yl Wllass

Week 8 8loluell pggin
Week 9 huads doladl byl (5ol
Week 10 | OliabYlg yaxidly pedl &y

Week 11 | 4,50 wb,>
Week 12 | &Sl Jgll oo Juaddl 0456

Week 13 | Jondl &y>
Week 14 | delually 8yl &y>
Aclually 8yl doy>

dola)l byl dwliadl Ol 1Y) Emanl!

Week 15

CIU @l (§ doladl Wbyl GU Camnall
dalall ©Ly=dlg é\&ﬂb g.?z.s.l;'..‘l paadl Il Couall

Learning and Teaching Resources
U’“ﬁ)m‘ﬁ M\).}L@.@

Text Available in the Library?

Required Texts P! (§ 0Ll G ¢ jo3all dus pal. NO

Recommended oaibazlly pggaall .. Ol God> ¢ 20156d gun 84S dta (o
Texts obadly wladiaily
Websites

NO

Grading Scheme
@il) Jalasus
Group Grade SRV Marks % Definition
A - Excellent i 90- 100 Outstanding Performance
B - Very Good 80 -89 Above average with some errors
C-Good ve 70-79 Sound work with notable errors
D - Satisfactory i 60 - 69 Fair but with major shortcomings

Success Group
(50 - 100)

E - Sufficient & 50-59 Work meets minimum criteria
Fail Group FX - Fail (A= ladl ud) Cwsly | (45-49) More work required but credit awarded
(0-49) F - Fail sl (0-44) Considerable amount of work required

Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a
mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT
to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the
automatic rounding outlined above.

MODULE DESCRIPTION FORM

M\)ﬂ\ salall —La g CJ}A.\

Module Information
2\:\“\)3]\ 3alall uLA)l,.A

Module Title Problems Solving & Programming Il | Module Delivery

Module Type Core X Theory

Module Code Lecture
Lab

ECTS Credits 6] Tutorial

I Practical
SWL (hr/sem) 150 [0 Seminar

Module Level Semester of Delivery

Administering Department College | CSM

Module

Name e-mail E-mail
Leader

Module Leader’s Acad. Title |r Module Leader’s Qualification

Module Tutor | Name (if available) e-mail E-mail

Peer Reviewer Name Name e-mail E-mail

Scientific Committee

Approval Date Version Number

Relation with other Modules

6 AV Agusl) o) gall ae A8DLall

Prerequisite module NT102 Semester

Co-requisites module None Semester

Module Aims, Learning Outcomes and Indicative Contents
A5 Y1 il ginall g alail) =il g gl Hall Balall Cilaa

1. Understanding Object-Oriented Programming (OOP) Concepts:
1. Define and explain the fundamental concepts of OOP, such as
classes, objects, encapsulation, inheritance, and polymorphism.
Module Objectives 2. Understand the benefits and advantages of using OOP in
Lol) 3ol Cilaa software development.
2. Mastering C++ Syntax and Language Features:
1. Acquire a solid understanding of C++ syntax, data types, control
structures, functions, and basic input/output operations.
2. Familiarize students with C++ libraries, particularly the
Standard Template Library (STL).
3. Implementing Classes and Objects in C++:

1. Learn how to define classes, create objects, and understand the
relationship between classes and objects.

2. Understand the concepts of constructors, destructors, and
member functions.

Encapsulation and Data Hiding:

1. Understand the principles of encapsulation and data hiding to
create robust and maintainable code.

2. Implement access specifiers (public, private, protected) to
control the visibility of class members.

Inheritance and Polymorphism:

1. Understand the concept of inheritance and its role in code reuse
and extensibility.

2. Implement inheritance relationships and demonstrate knowledge
of base and derived classes.

3. Learn about polymorphism and the use of virtual functions to
achieve runtime polymorphism.

. Advanced C++ Features:

1. Explore advanced features of C++, such as templates, operator
overloading, and exception handling.

2. Understand smart pointers and memory management techniques.

Object-Oriented Design Principles:

1. Learn and apply key design principles, such as SOLID (Single
Responsibility, Open-Closed, Liskov Substitution, Interface
Segregation, Dependency Inversion) and DRY (Don't Repeat
Yourself).

2. Understand the importance of designing reusable, modular, and
maintainable code.

Practical Application and Problem-Solving:

1. Apply object-oriented concepts and C++ programming skills to
solve real-world problems.

2. Design and implement larger projects using object-oriented
design principles.

Debugging and Testing:

1. Develop skills in debugging C++ code and troubleshooting
common errors.

2. Learn and apply effective testing techniques to ensure code
correctness.

10. Collaboration and Software Development Best Practices:

1. Develop skills in collaborative software development, including
version control systems (e.g., Git) and team-based coding
practices.

2. Understand the importance of writing clean, readable, and well-
documented code.

Module Learning
Outcomes

Aol) oLl lasll s jie

Upon completing the course, students should be able to:

1. Knowledge and Understanding:

1. Demonstrate a solid understanding of the fundamental concepts
of object-oriented programming, including classes, objects,
inheritance, polymorphism, encapsulation, and data hiding.
Explain the benefits and advantages of using object-oriented
programming in software development.

3. Understand the syntax, language features, and libraries of C++,

particularly the Standard Template Library (STL).
2. Programming Skills:

1. Develop proficiency in writing C++ code using appropriate
syntax, data types, control structures, functions, and input/output
operations.

Implement classes and objects in C++ and apply object-oriented
design principles to create robust and maintainable code.

Utilize inheritance and polymorphism to achieve code reuse,
extensibility, and runtime flexibility.

Demonstrate proficiency in advanced C++ features, such as
templates, operator overloading, and exception handling.

5. Apply debugging techniques to identify and resolve errors in
C++ code.

3. Problem-Solving and Application:

1. Analyze real-world problems and design appropriate solutions
using object-oriented programming principles.

2. Apply object-oriented design techniques to model and solve
complex software problems.

3. Develop and implement larger projects using object-oriented
programming concepts and practices.

4. Use appropriate testing techniques to ensure code correctness
and reliability.

4. Design and Documentation:

1. Design software solutions using object-oriented analysis and
design techniques.

2. Apply software engineering principles to create well-designed,
modular, and reusable code.

3. Write clear and well-documented code that follows established
coding standards.

4. Document and communicate the design and functionality of
software solutions effectively.

5. Collaboration and Professionalism:

1. Work effectively in teams to develop software solutions,
utilizing version control systems and collaborative coding
practices.

2. Demonstrate professionalism, ethical behavior, and effective
communication skills in a software development context.

3. Apply software development best practices, including code
reviews, testing, and project management techniques.

Indicative Contents
Joala Y b sisal)

21. Introduction to Object-Oriented Programming (OOP):
o Overview of procedural programming vs. object-oriented
programming.
o Key concepts of OOP: classes, objects, encapsulation,
inheritance, and polymorphism.
o Benefits and advantages of using OOP in software development.
22. Introduction to C++:
o Basics of C++ programming language: syntax, data types,
control structures, functions.

o Input/output operations using streams.
o Pointers and memory management.
23. Classes and Objects in C++:
Defining classes and objects.
o Member variables and member functions.
o Constructors and destructors.
o Access specifiers: public, private, and protected.
o Encapsulation and data hiding.
24. Inheritance and Polymorphism:
Inheritance hierarchy and base/derived classes.
Overriding member functions.
Virtual functions and dynamic polymorphism.
Abstract classes and pure virtual functions.
o Polymorphism with pointers and references.
25. Advanced Topics in C++:
o Templates and generic programming.
o Operator overloading.
o Exception handling.
o Smart pointers and memory management.
26. Object-Oriented Design Principles:
o SOLID principles (Single Responsibility, Open-Closed, Liskov
Substitution, Interface Segregation, Dependency Inversion).
o Design patterns: factory, observer, strategy, etc.
o Designing and implementing reusable and modular code.
27. Standard Template Library (STL):
o Overview of STL containers: vectors, lists, maps, etc.
o STL algorithms: sorting, searching, etc.
o Iterators and generic algorithms.
28. File Handling and Input/Output Streams:
o Reading from and writing to files.
o Input/output streams and stream manipulators.
29. Software Development Practices:
o Debugging techniques and tools.
o Testing and test-driven development.
o Version control systems (e.g., Git) and collaborative coding
practices.
30. Practical Application and Projects:
o Implementing small to medium-sized projects using object-
oriented principles and C++.
Applying object-oriented design techniques to solve real-world
problems.
Project management and documentation.

@)
@)
@)
@)

Learning and Teaching Strategies

aabeil g alail) ol i

Strategies \ Learning and teaching strategies for the IT basics course for the Network

department can include a combination of the following:

29. Hands-on Programming Assignments: Provide students with regular
programming assignments that require them to apply object-oriented
concepts in C++. These assignments should progressively increase in
complexity to reinforce their understanding and skills.

. Project-Based Learning: Assign larger projects that allow students to
design and implement software solutions using object-oriented
principles. These projects should simulate real-world scenarios and
require students to apply their knowledge in a practical context.

. Code Reviews and Peer Feedback: Encourage students to review and
provide feedback on each other's code. This promotes collaboration,
exposes students to different coding styles, and helps them learn from
each other's approaches.

. Interactive Coding Sessions: Conduct interactive coding sessions where
students can participate in live coding exercises or solve programming
problems together as a class. This allows for immediate feedback and
discussion, fostering active learning.

. Use of Visualizations and Diagrams: Utilize visual aids such as
diagrams, UML (Unified Modeling Language) representations, and
flowcharts to illustrate object-oriented concepts and relationships.
Visualizations help students grasp abstract concepts and improve their
understanding of class hierarchies and interactions.

. Code Walkthroughs and Examples: Walkthrough well-commented code
examples to demonstrate the implementation of various object-oriented
concepts in C++. This helps students understand how to apply these
concepts in practice and promotes good coding practices.

. Classroom Discussions and Debates: Engage students in discussions
and debates on topics related to object-oriented programming.
Encourage critical thinking and analysis of different design choices,
design patterns, and trade-offs in software development.

. Guest Lectures and Industry Insights: Invite industry professionals or
experts to deliver guest lectures, sharing their experiences and insights
on object-oriented programming in the real world. This exposes
students to practical applications of the concepts they are learning and
provides valuable industry perspectives.

. Online Resources and Tutorials: Share supplementary online resources,
tutorials, and interactive coding platforms that allow students to practice
and reinforce their learning outside of the classroom. Online resources
can include coding challenges, tutorials, and videos that provide
additional explanations and examples.

. Assessments and Feedback: Provide regular assessments, such as
quizzes and exams, to gauge students’ understanding of object-oriented
programming concepts in C++. Provide constructive feedback on their
work to guide their learning and improvement.

Student Workload (SWL)

Lo sad 10 3 yume Ul o3l Jaa

Structured SWL (h/sem) -8 Structured SWL (h/w)
daadll A Ul alisall ol 5ol Jasl) e sand Callall altial) ol) Jasl)
Unstructured SWL (h/sem) Unstructured SWL (h/w)

il A llall plsiiall ye ol yal) Jaal) L ol Uall daiial) e sl 5l Joal
Total SWL (h/sem)

il DA Callall I _al) Jas)

150

Module Evaluation
A) Bkl agss

Time/Numbe i Relevant Learning
Weight (Marks) | Week Due

r Outcome

LO #1, #2 and #10,

#11

Formative | Assignments 10% (10) 2and 12 | LO #3, #4 and #6, #7

assessment . Continuou

Projects / Lab. 10% (10) . All

Report 10% (10) 13 LO #5, #8 and #10

) Midterm
Summative 10% (10) 7 LO #1 - #7

Exam
assessment _
Final Exam 50% (50) All

100% (100
Marks)

Quizzes 2 10% (10) 5and 10

Total assessment

Delivery Plan (Weekly Syllabus)
bl e) Zleial)

Material Covered

Week 1 Review to the Introduction to Problem Solving and Programming |

Week 2-3 | structure Compound Data types
Week 4-5 | string Manipulation

Week 6 | Dynamic Memory Allocation
Week 7-8 | Files

Week9 | Mid Term Examination

Week 10

Exception Handling

Week 11-14

Prepare Mini Project

Week 15

Revision and Review

Delivery Plan (Weekly Lab. Syllabus)
iRl e) leiall

Material Covered

Week 1: Review of Introduction to Problem Solving and Programming |

e Recap of problem-solving techniques and programming concepts covered in the
previous course
o Review exercises and discussions to reinforce the foundational knowledge

Week 2-3

Week 2 - 3: Structure Compound Data Types

e Introduction to structure data types in programming
e Understanding how to define and use structures in C++
« Hands-on exercises to practice working with structures

Week 4-5

Week 4-5: String Manipulation

o Exploring string data types and their manipulation in C++
« String functions and operations
o Practical exercises and projects involving string manipulation

Week 6: Dynamic Memory Allocation

e Understanding dynamic memory allocation in C++
« Working with pointers and memory allocation functions (new, delete)
« Practical examples and exercises to reinforce the concept

Week 7-8

Week 7-8: Files

e Introduction to file handling in C++
« Reading from and writing to files
o Exercises and projects involving file input/output operations

Week 9: Midterm Examination

o Midterm examination covering topics from weeks 1-8
e Review of previous topics and discussion of any questions or concerns

Week 10: Exception Handling

e Introduction to exception handling in C++
« Handling runtime errors and exceptional situations
e Practice exercises and examples to understand exception handling mechanisms

Week 11-14

Week 11-14: Prepare Mini Project

« Working on a mini project that integrates concepts learned so far
e Planning, designing, and implementing a small-scale application or program
e Regular progress check-ins and guidance throughout the project development

Week 15

Week 15: Revision and Review

o Recap of all topics covered throughout the course
o Review exercises, discussions, and Q&A sessions to solidify understanding
o Final exam preparation and guidance

Learning and Teaching Resources
u.u,g)ﬂ\} (J,_\M JJ\.».aA

Available in the
Library?

Text

Required Texts

Problem Solving with C++

by Walter Savitch (Author), Kenrick Mock (Author)

Recommended

Texts

Websites

Grading Scheme
Gilaall lads

s | Marks | Definition

%
A - Excellent)2 90 - 100 | Outstanding Performance
B - Very
Success Good
Group C - Good > 70-79 Sound work with notable errors
(50 - 100) D -
Satisfactory
E - Sufficient 50-59 Work meets minimum criteria
. . . More work required but credit
FX — Fail (adadd 38) caul5 | (45-49) | e PO
Considerable amount of work
required

80 -89 Above average with some errors

60 - 69 Fair but with major shortcomings

Fail Group
(0-49)

F — Fail Caal (0-44)

Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for
example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The
University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the
original marker(s) will be the automatic rounding outlined above.

MODULE DESCRIPTION FORM
M\)ﬂ\ 3Ll S g CJ}A.\

Module Information
:\:\M\Jﬂ\ 3Ll LL\LA)SM

Module Title Computer Organi zation Module Delivery

Module Type Core X Theory
Lecture
Lab
ECTS Credits 5 Tutorial

Practical
SWL (hr/sem) Seminar

Module Code NT108

Module Level 1 Semester of Delivery

Administering Department Type Dept. Code College Type College Code

Module Leader e-mail

Module Leader’s Acad. Title Lecturer Module Leader’s Qualification

Module Tutor Name (if available) e-mail E-mail

Peer Reviewer Name Name e-mail E-mail

Scientific Committee Approval

Version Number
Date

Relation with other Modules

A A Hal 3 sall ae 28D

Prerequisite module Semester

Co-requisites module Semester

Module Aims, Learning Outcomes and Indicative Contents
AL Y1 il ginall g alil) il g gl Hall Balall Ciload

1. Understanding Computer Architecture:
o Gain a comprehensive understanding of computer organization
and architecture principles.
o Understand the components and their interconnections in a
computer system.
Data Representation and Arithmetic:
o Learn various number systems and their conversions (binary,
decimal, hexadecimal).
Understand how data is represented and manipulated in a
computer system.
o Perform arithmetic operations on binary numbers.
Memory Systems:
o Understand the organization and hierarchy of computer memory
Module Objectives systems.
Lo pall Balall Calaa Learn about caching techniques and their impact on
performance.
o Study memory management and addressing techniques.
Instruction Set Architecture (ISA):
o Learn about different instruction set architectures and their
characteristics.
o Understand the components and execution of instructions.
o Analyze the relationship between ISA and machine language.
Processor Organization:
o Understand the structure and components of a processor.
o Learn about instruction pipelining and its benefits and
challenges.
o Study the design and implementation of control units.
Input/Output (1/0) Systems:
o Learn about different 1/0 devices and their interfaces.

o Understand the techniques used for 1/0 data transfer.
o Study interrupt handling and DMA (Direct Memory Access).
Parallel Processing and Multiprocessor Systems:
o Understand the concepts of parallel processing and its benefits.
o Study different parallel processing architectures and their
characteristics.
o Learn about multiprocessor systems and their organization.
Performance Evaluation and Optimization:
o Learn performance metrics and evaluation techniques for
computer systems.
o Understand the factors affecting computer system performance.
o Study optimization techniques to improve system performance.
Emerging Trends and Technologies:
o Explore current and emerging trends in computer organization.
o Study new technologies and their impact on computer systems.
o Understand the challenges and opportunities in designing future
computer architectures.

Module Learning
Outcomes

Aol) oLl lesll s e

Understand the fundamental principles of computer organization and
architecture, including the components and their interactions within a
computer system.

Demonstrate knowledge and proficiency in various number systems,
data representation, and arithmetic operations in a computer system.
Analyze and evaluate different memory systems, including cache
memory and main memory, and understand their impact on computer
performance.

Describe and interpret different instruction set architectures (ISAS),
including their components, instruction formats, and execution.
Analyze and evaluate the design and organization of processors,
including pipelining techniques and control unit implementation.
Understand the principles and techniques of input/output (I/O) systems,
including 1/O devices, interfaces, interrupts, and direct memory access
(DMA).

Discuss and evaluate parallel processing and multiprocessor systems,
including concepts of parallelism, parallel architectures, and
interconnectivity.

Apply performance evaluation techniques to measure and analyze the
performance of computer systems, and propose optimization strategies
for improving system performance.

Stay informed about current and emerging trends and technologies in
computer organization, and assess their potential impact on future
computer architectures.

. Demonstrate effective problem-solving, critical thinking, and analytical

skills in the context of computer organization and architecture.

. Communicate effectively, both orally and in writing, about complex

concepts and topics related to computer organization.

. Work collaboratively and contribute effectively as a team member in

group projects and activities related to computer organization.

Indicative Contents

Introduction to Computer Organization:

4l Y G siaal) o Basic concepts and terminology in computer organization.
o Historical development and evolution of computer architecture.
Digital Logic and Boolean Algebra:

o Binary representation and arithmetic operations.

o Logic gates, Boolean functions, and truth tables.

o Combinational and sequential logic circuits.

Data Representation and Arithmetic:

o Number systems: binary, decimal, hexadecimal.

o Signed and unsigned integer representation.

o Floating-point representation and arithmetic operations.

Central Processing Unit (CPU):

o Instruction set architecture (ISA) and machine language.

o CPU organization and components.

o Control unit, instruction fetching, and execution.

Memory Systems:

o Memory hierarchy and storage technologies.

o Cache memory organization, principles, and mapping
techniques.

o Main memory organization and addressing modes.

o Virtual memory concepts and techniques.

Input/Output (I/0O) Systems:

o /O devices, interfaces, and data transfer methods.

o Interrupt handling and interrupt-driven 1/0.

o Direct Memory Access (DMA) and its role in data transfer.

Pipeline Processing:

o Instruction pipelining concepts and stages.

o Hazards and techniques for hazard detection and resolution.

o Performance metrics and improvements in pipeline processing.

Parallel Processing and Multiprocessor Systems:

o Concepts of parallel processing and its benefits.

o Types of parallel architectures: SIMD, MIMD, and multicore.

o Interconnection networks and communication among
processors.

Performance Evaluation and Optimization:

o Performance metrics and measurement techniques.

o Bottleneck identification and performance analysis.

o Techniques for optimizing computer system performance.

10. Emerging Trends and Advanced Topics:

o Advanced topics in computer organization, such as superscalar
processors, out-of-order execution, and speculative execution.
Emerging technologies and their impact on computer
organization, such as quantum computing and neuromorphic
computing.

Learning and Teaching Strategies

addatl] g alatll Clasd) il
1. Understand the Fundamentals:
o Start by grasping the foundational concepts and principles of

Strategies

computer organization, such as binary representation, digital
logic, and Boolean algebra.
Build a strong understanding of number systems, data
representation, and arithmetic operations used in computer
systems.

Visualize and Diagram:

o Use visual aids, diagrams, and flowcharts to represent and
understand the structure and organization of computer
components.

o Draw diagrams to illustrate the flow of data and control signals
within a computer system, such as the CPU, memory, and 1/0
devices.

Hands-on Experience:

o Gain practical experience by working with computer hardware
and software. This can involve assembling computers,
configuring components, or writing low-level programs.

o Experiment with simulators or emulators to observe how
instructions are executed and how data flows through different
computer components.

Relate to Real-World Examples:

o Relate the concepts of computer organization to real-world
examples and applications. Understand how the principles of
computer organization are applied in everyday computing
devices.

Analyze and Evaluate Case Studies:

o Study and analyze case studies of actual computer architectures
and designs.

o Examine the trade-offs made in the design of different computer
systems, considering factors such as performance, power
consumption, and cost.

Solve Practice Problems:

o Practice solving problems related to computer organization. This
could involve analyzing and designing digital circuits, writing
assembly language programs, or optimizing system
performance.

Stay Updated with Current Research:

o Keep up-to-date with the latest advancements and research in
computer organization.

o Read academic papers, attend conferences, and follow industry
trends to understand emerging technologies and new approaches
to computer organization.

Collaborate and Discuss:

o Engage in discussions and collaborate with peers or study
groups. Share knowledge, exchange ideas, and clarify concepts
through group discussions or online forums.

Seek Guidance and Resources:

o Consult textbooks, online resources, and academic materials that
cover computer organization.

o Seek guidance from instructors, tutors, or professionals with
expertise in computer architecture and organization.

10. Practice Conceptual Mapping:

Develop a conceptual map or framework to connect the different
topics and components of computer organization.

Understand how the various concepts and components fit
together to form a cohesive computer system.

Student Workload (SWL)

Structured SWL (h/sem) 63 Structured SWL (h/w)
Jadll J3A ClUall alasiall ol jall Jaal) e ol Callall aliiall sl 5all Jaall

Unstructured SWL (h/sem) 62 Unstructured SWL (h/w)
Saaill D& Ul pliil) e sl jall Jaal L paud Ul il e sl 53 Jaal
Total SWL (h/sem)

Juadll & lUall S) Jasl)

125

Module Evaluation
:\:u.ubﬂ\ 3alal) e.\:as'l

. . Relevant Learning
Time/Number Weight (Marks) Week Due
Outcome

Quizzes 10% (10) 5and 10 LO #1, #2 and #10, #11

Formative Assignments 10% (10) 2and 12 LO #3, #4 and #6, #7

Report 10% (10) 13 LO #5, #8 and #10
Summative Midterm Exam 10% (10) 7 LO #1 - #7
assessment Final Exam 50% (50) 16 All

Total assessment 100% (100 Marks)

(
(
assessment Projects / Lab. 10% (10) Continuous | All
(
(

Delivery Plan (Weekly Syllabus)

bl e) zleiddl

Material Covered

Week 1

Introduction to Computer Organization, Overview of computer systems and their components

)

Week 2

Digital Logic and Boolean Algebra,

Week 3

Data Representation and Arithmetic

Week 4

Central Processing Unit (CPU) (-)

Week 5

Instruction set architecture (ISA) and machine language

Week 6

CPU organization and components

Week 7

Control unit and instruction execution

Week 8

Memory Hierarchy (-)

Week 9

Memory organization and addressing (-)

Week 10

Cache memory: principles, levels, and mapping techniques (-)

Week 11

Input/Output Systems, Interrupts and DMA (Direct Memory Access), I/0O performance and

strategies

Week 12

Pipelining and Superscalar Techniques

Week 13

Multiprocessors and Parallel Computer Architecture

Week 14

Performance Evaluation and Benchmarking

Week 15

Review

Delivery Plan (Weekly Lab. Syllabus)
DAl e ¥ lgiall

Material Covered

Week 1

8086 system architecture

Week 2

8086 Instruction Set-1

Week 3

8086 Instruction Set-2

Week 4

8086 Instruction Set-3

Week 5

8086 Instruction Set-4

Week 6

8086 Instruction Set-5

Week 7

8086 Addressing Mode

Week 8

Memories (RAM, ROM) (-)

Week 9

Cache Memory ((-))

Week 10

8086 Programming Skills

Week 11

8086 Programming Skills

Week 12

8086 1/0 unit

Week 13

Memory Mapped I/O, Isolated Input Output

Week 14

Memory/Input Output Interface

Week 15

Review

Learning and Teaching Resources

L}“:‘Jﬂ\} {J,_\M JJ\.».aA
Text Available in the Library?

Hwang K., 1993, "Advanced Computer
Architecture: Parallelism ,Scalability and
Programmability", McGraw-Hill, Inc. ASIN:

7111067126.

Barry B. Brey, "The Intel Microprocessors: 8086/8088,
Recommended 80186/80188, 80286, 80386, 80486, Pentium, and Pentium

Texts Pro Processor Architecture, Programming, and Interfacing”,

Required Texts

Pearson Education, 2010

https://www.javatpoint.com/8086-microprocessor

Websites https://www.tutorialspoint.com/microprocessor/microprocessor 8086 functional units.h

tm

Grading Scheme
Group Grade pasil) Marks % | Definition
A - Excellent Dkl 90-100 Outstanding Performance
B - Very Good [RENRTEN 80 -89 Above average with some errors
C-Good > 70-79 Sound work with notable errors
D - Satisfactory 60 - 69 Fair but with major shortcomings

Success Group
(50 - 100)

E - Sufficient 50-59 Work meets minimum criteria
Fail Group FX - Fail (45-49) More work required but credit awarded
(0-49) F - Fail - (0-44) Considerable amount of work required

Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a
mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT
to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the
automatic rounding outlined above.

MODULE DESCRIPTION FORM

dawydl Baledl Cauog Zd 9o

Module Information

sl Boladl iloglra

Module Title

Data Communication and
Networking

Module Delivery

Module Type

Core X Theory

Module Code

Lecture

NT109 0 Lab

ECTS Credits

5 Tutorial
OlPractical

SWL (hr/sem)

125 O Seminar

Module Level

Semester of Delivery

Administering Department

College CSM

Module Leader Name

e-mail E-mail

Module Leader’s Acad. Title

Module Leader’s Qualification

Module Tutor Name (if available) e-mail E-mail

Peer Reviewer Name

Name e-mail E-mail

Scientific Committee Approval Date Version Number

Relation with other Modules

31 Ayl sl gall ae A8l

Prerequisite module

Semester

Co-requisites module

Semester

Module Aims, Learning Outcomes and Indicative Contents

LolinYl Olgizally platll g5l g Ayl Balell Lol

Module Objectives
dulyud) Baladl CBlual

In this course, Networks department aims to achieve the following objectives:

1. Understand the fundamental concepts and principles of data
communication and networking.
Gain knowledge of communication systems and their components.
Familiarize with different communication network types and their
characteristics.
Comprehend the protocol architecture and the OSI model.
Understand the functions and operations of each layer in the OSI model.
Gain knowledge of the physical layer, including digital and analog
transmission and various transmission media.

Understand data and signal concepts, analog, and digital signals, and
transmission impairments.
Learn about digital transmission techniques, including digital-to-digital
conversion and transmission modes.
Familiarize with analog transmission techniques, including analog-to-
analog conversion and modulation.

. Gain knowledge of multiplexing techniques such as FDM, TDM, and WDM,
and understand synchronization methods.

. Learn about guided transmission media, including twisted pair, coaxial
cable, and fiber-optic.

. Gain knowledge of unguided transmission media, including wireless,
satellite, and microwave.

. Understand error detection and correction techniques such as parity
checking, checksum, and CRC.

. Learn about multiplexing and multiple access techniques, including FDMA,
TDMA, and CDMA.

. Gain knowledge of wired LANs, with a focus on Ethernet standards,
evolution, frame structure, and operation.

Module Learning
Outcomes

Soled) @hasdl Ol y3en
Ay

Upon successful completion of the this course for the Networks department,
students should be able to demonstrate the following learning outcomes:

1. Understand the fundamental concepts and principles of data
communication and networking, including communication
models, network types, and protocol architecture.

Demonstrate knowledge of the OSI model and its layers, and
explain the functions and operations of each layer.

Describe the characteristics, advantages, and limitations of
different transmission media, both guided and unguided.
Analyze and interpret data and signals, including analog and
digital signals, and understand the factors affecting transmission
quality.

Apply digital transmission techniques, including digital-to-digital
conversion and various transmission modes.

Apply analog transmission techniques, including analog-to-
analog conversion and modulation methods.

Demonstrate an understanding of multiplexing techniques, such
as FDM, TDM, and WDM, and explain their advantages and
applications.

Compare and contrast different guided transmission media, such
as twisted pair, coaxial cable, and fiber-optic, based on their
characteristics and capabilities.

Evaluate the characteristics and advantages of unguided
transmission media, including wireless, satellite, and microwave
technologies.

10. Apply error detection and correction techniques, including parity

checking, checksum, and CRC, to ensure data integrity.

11. Analyze multiplexing and multiple access techniques, such as
FDMA, TDMA, and CDMA, and understand their applications in
communication systems.

12. Explain the Ethernet standard, its evolution, and the frame
structure of Ethernet LANs.

13. Evaluate the security considerations and challenges associated
with data communication and networking.

14. Demonstrate effective communication and collaboration skills in
a networking context.

15. Apply theoretical knowledge to analyze and solve practical
problems related to data communication and networking.

The indicative contents of this course for the computer department may include
the following topics:

1. Communication Systems
e Introduction to communication systems
o Communication models and components
Network Criteria and Communication Network Types
o Network criteria (performance, reliability, security, etc.)
o Communication network types
Protocol Architecture and OSI Model
e Protocol architecture and layered approach
o OSI model and its layers
e Functions of each OSI layer
Physical Layer
Indicative Contents e Introduction to the physical layer
QoL bgisal| o Digital and analog transmission
“ e Transmission media: Guided and unguided
Data and Signals
« Data and signal concepts
e Analog and digital signals
o Transmission impairments and noise
Digital-to-Digital Conversion
» Digital-to-digital conversion techniques
. Analog Transmission
e Analog-to-analog conversion
e Analog-to-digital conversion
e Modulation techniques (AM, FM, PM)
Multiplexing
e Multiplexing techniques (FDM, TDM, WDM)
« Statistical multiplexing and its advantages

e Synchronization and its types
9. Guided Transmission Media

o Twisted pair, coaxial cable, and fiber-optic

o Characteristics, advantages, and limitations
10. Unguided Transmission Media

o Wireless, satellite, and microwave

o Characteristics, advantages, and limitations
11. Error Detection and Correction

e Introduction to error detection and correction

e Parity checking, checksum, and CRC

e Forward error correction techniques
12. Multiplexing and Multiple Access

« Frequency division multiplexing (FDM)

e Time division multiplexing (TDM)

e Multiple access techniques (FDMA, TDMA, CDMA)
13. Wired LANs: Ethernet

e Introduction to local area networks (LANSs)

o Ethernet standard and its evolution.

o Ethernet frame structure and operation

Learning and Teaching Strategies

odatly elasdl bl il

Strategies

Learning and teaching strategies for this course for the Network department can
include a combination of the following:

39. Lectures: Engage students through informative lectures that cover
theoretical concepts and provide an overview of key topics. Use
multimedia resources, visuals, and real-world examples to enhance
understanding.

. Group Discussions and Collaborative Learning: Encourage group
discussions and collaborative activities to foster interaction and
knowledge sharing among students. Assign group projects or case
studies that require teamwork and problem-solving.

. Online Resources and Multimedia: Utilize online resources, interactive
tutorials, and multimedia materials to supplement learning. This can
include video lectures, online quizzes, virtual labs, and interactive
modules.

42. Assignments and Projects: Assign individual and group projects that
require students to apply their knowledge and skills to solve real-world
problems or complete practical tasks. This promotes critical thinking,
problem-solving, and practical application of concepts.

43. Assessments and Feedback: Conduct regular assessments, quizzes, and
examinations to evaluate students' understanding of the course material.

Provide timely and constructive feedback to help students identify areas
of improvement.

. Industry Visits and Field Trips: Organize visits to IT companies, data
centers, or relevant organizations to expose students to real-world IT
environments. This provides valuable industry insights and networking
opportunities.

. Online Discussion Forums and Communication Platforms: Establish
online discussion forums or communication platforms where students
can ask questions, share resources, and engage in discussions outside of
the classroom.

These strategies promote active learning, practical application of knowledge,
and engagement with the subject matter. They cater to different learning styles
and encourage students to develop critical thinking, problem-solving, and
communication skills necessary for success in this field.

Student Workload (SWL)

L gasnl 10 J gaumen lall gyl Jasell

Structured SWL (h/sem) = Structured SWL (h/w)

el I LIl elaiedl (qulyldl ol s gl Ul @laiiall gyl Joznll

Unstructured SWL (h/sem) % Unstructured SWL (h/w)

Jeadl] I3 CIlall elasiall p (gwlyadl Jos| Le gl CIUall elatiall g oyl Joundl
Total SWL (h/sem)

Bl I3l LIUall JSI1 (gl Jonll 125

Module Evaluation

. . Relevant Learning
Time/Number Weight (Marks) Week Due
Outcome

Quizzes 5and 10 LO #1, #2 and #10, #11

Formative Assignments 2and 12 LO #3, #4 and #6, #7

assessment Projects / Lab. Continuous | All

Report 13 LO #5, #8 and #10
Summative Midterm Exam 7 LO #1 - #7
assessment Final Exam 50% (50) 16 All

Total assessment 100% (100 Marks)

Delivery Plan (Weekly Syllabus)

Sl (£ gl Zlgholl

Material Covered

Week 1 °

Communication Systems

Week 2

Network Criteria and Communication Network Types

Week 3

Protocol Architecture and OSI Model

Week 4

Physical Layer

Week 5

Data and Signals

Week 6

Digital-to-Digital Conversion (Part 1)

Week 7

Digital-to-Digital Conversion (Part 2)

Week 8

Analog Transmission

Week 9

Mid term

Week 10

Multiplexing

Week 11

Guided Transmission Media

Week 12

Unguided Transmission Media

Week 13

Error Detection and Correction

Week 14

Wired LANs: Ethernet

Week 15

Week 15: Review

Week 16 | Preparatory week before the final Exam

Learning and Teaching Resources
wf).\ﬂb Plx’ﬂ\).)l.,a.o

Text

Available in the Library?

Required Texts

Data Communication and Networking

Recommended

Texts

Websites

Grading Scheme
Ol lalaseo
Group Grade SRV Marks % Definition

A - Excellent H 90-100 Outstanding Performance

B - Very Good 80 -89 Above average with some errors

Success Group

(50 - 100) C - Good ~ 70-79 Sound work with notable errors

D - Satisfactory i 60 - 69 Fair but with major shortcomings

E - Sufficient A& 50-59 Work meets minimum criteria
Fail Group FX - Fail (A ladl ud) Cwly | (45-49) More work required but credit awarded
(0-49) F - Fail sl (0-44) Considerable amount of work required

Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a
mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT
to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the
automatic rounding outlined above.

MODULE DESCRIPTION FORM

duwyl Baledl Cauog Zdged

Module Information
Lyl B3kl o glas

Module Title Probabilities and Statistics | Module Delivery

Module Type SUPPORT X Theory

X Lecture
Module Code NTllO X Lab

O Tutorial
O Practical

SWL (hr/sem) 125 1 Seminar

ECTS Credits 5

Module Level Semester of Delivery

Administering Department College CSM

Module Leader Name e-mail E-mail

Module Leader’s Acad. Title Module Leader’s Qualification

Module Tutor Name (if available) e-mail E-mail

Peer Reviewer Name Name e-mail E-mail

Scientific Committee Approval Date

Version Number

Relation with other Modules

53 syl Sl gall ao A8l

Prerequisite module

Semester

Co-requisites module

Semester

Module Aims, Learning Outcomes and Indicative Contents
oLVl Gbgizally platdl g5l 9 dushyldl B3kl Glaa]

Module Objectives
o)y BaLadl Lol

1.

The Probabilities and statistics basics course for the Networks department aims
to achieve the following objectives:

Understand the fundamental concepts of probability theory: Students
should develop a solid foundation in probability theory, including
concepts such as sample spaces, events, probability axioms, conditional
probability, and independence.

. Apply probability concepts to real-world scenarios: Students should be

able to apply probability theory to solve problems and analyze real-
world situations that involve uncertainty and randomness. This includes
calculating probabilities, understanding the concept of expected value,
and analyzing random variables.

. Comprehend statistical concepts and methods: Students should acquire

a good understanding of statistical concepts, such as random variables,
probability distributions, central tendency, variability, hypothesis
testing, confidence intervals, and regression analysis.

. Perform statistical data analysis: Students should learn how to collect,

organize, and analyze data using appropriate statistical techniques. This
includes techniques for data exploration, summarization, and inference.

. Interpret and communicate statistical results: Students should be able to

interpret the results of statistical analyses and effectively communicate
their findings to others. This involves understanding the limitations of
statistical methods and drawing appropriate conclusions from the data.

. Apply statistical software: Students should gain hands-on experience

with statistical software packages commonly used for data analysis,
such as R, Python, or SPSS. They should be able to use these tools to
perform statistical computations and generate graphical representations
of data.

. Develop critical thinking and problem-solving skills: The course aims to

enhance students’ critical thinking abilities by challenging them to
analyze problems, evaluate evidence, and make informed decisions
based on statistical reasoning.

. Foster a strong mathematical foundation: Probability and Statistics often

require a solid understanding of mathematical concepts, so the course
aims to strengthen students' mathematical skills, including algebra,
calculus, and basic mathematical notation.

. Prepare for further study in related fields: The course may serve as a

prerequisite or provide a foundation for more advanced courses in areas
such as machine learning, data science, economics, psychology, or
engineering, where probabilistic and statistical methods are commonly
used.

Module Learning
Outcomes

Soled) @lasdl Oolory3ee
eyl

Upon successful completion of the Probabilities and statistics basics course for
the Networks department, students should be able to demonstrate the following
learning outcomes:

1.

Understand fundamental probability concepts: Students should be able
to demonstrate a strong understanding of basic probability concepts,
including sample spaces, events, probability axioms, conditional
probability, and independence.

. Apply probability techniques: Students should be able to apply

probability techniques to solve problems in various contexts, such as
calculating probabilities of events, determining expected values, and
understanding concepts like random variables and probability
distributions.

. Analyze statistical data: Students should be able to collect, organize,

and analyze data using appropriate statistical methods. This includes
understanding descriptive statistics, graphical representations of data,
and basic inferential statistics.

. Interpret statistical results: Students should be able to interpret the

results of statistical analyses and draw meaningful conclusions. This
involves understanding concepts such as confidence intervals,
hypothesis testing, p-values, and statistical significance.

. Apply statistical software: Students should be proficient in using

statistical software packages (e.g., R, Python, SPSS) to perform data

analysis and generate graphical representations of data.

. Critically evaluate statistical claims: Students should be able to
critically evaluate statistical claims and arguments presented in various
contexts, such as scientific research, news articles, and advertisements.
They should be able to identify common fallacies and recognize the
importance of sound statistical reasoning.

. Communicate statistical information: Students should be able to
effectively communicate statistical information to both technical and
non-technical audiences. This includes presenting findings, using
appropriate visualizations, and conveying the limitations and
implications of statistical analyses.

. Apply statistical methods to real-world problems: Students should be
able to apply their knowledge of probability and statistics to real-world
problems in various fields, such as business, social sciences,
engineering, or healthcare. They should be able to identify appropriate
statistical methods and apply them to analyze and solve problems.

. Develop critical thinking and problem-solving skills: The course should
foster the development of critical thinking skills by engaging students in
problem-solving activities that require them to think analytically, reason
statistically, and make informed decisions based on data.

Prepare for further study or careers: The course should provide a
solid foundation for students who wish to pursue further study or
careers in fields that require a strong understanding of probability and
statistics, such as data science, machine learning, economics,
psychology, or research.

These learning outcomes reflect the overarching goals of a Probabilities and
Statistics course, which aim to equip students with the knowledge, skills, and
tools necessary to understand and analyze data, make informed decisions, and
apply statistical methods in various contexts.

The indicative contents of the Probabilities and Statistics basics course for the
computer department may include the following topics:

31. Introduction to Probability:

Indicative Contents o Basic concepts of probability: sample spaces, events, and
Lol Obgioll outcomes.

o Probability axioms and properties.

o Combinatorics: permutations and combinations.

o Conditional probability and independence.

32. Discrete Probability Distributions:

Random variables and probability mass functions.
Common discrete probability distributions: binomial, Poisson,
and geometric distributions.

o Expected value and variance of discrete random variables.

o Joint probability distributions and conditional distributions.

33. Continuous Probability Distributions:

o Continuous random variables and probability density functions.

o Common continuous probability distributions: uniform,
exponential, normal (Gaussian), and gamma distributions.

o Expected value and variance of continuous random variables.

o Joint probability distributions and conditional distributions.

34. Sampling and Data Description:

o Sampling techniques and sampling distributions.

o Descriptive statistics: measures of central tendency, measures of
dispersion, and graphical representations of data.

o Data exploration and visualization.

35. Estimation and Confidence Intervals:

o Point estimation: methods for estimating population parameters.

o Interval estimation: construction and interpretation of confidence
intervals.

o Sample size determination for estimation.

36. Hypothesis Testing:

o Null and alternative hypotheses.
o Test statistics and p-values.
Types of errors and power of tests.
Common hypothesis tests: z-tests, t-tests, chi-square tests.

37. Inference for Means and Proportions:

o Inference for population means: one-sample, independent
samples, and paired samples.

o Inference for population proportions: one-sample and two-
sample proportions.

38. Analysis of Variance (ANOVA):

o One-way ANOVA: comparing means of multiple groups.
o Post hoc tests and multiple comparisons.
o Two-way ANOVA: analyzing the effects of two factors.

39. Simple Linear Regression:

o The simple linear regression model.
o Least squares estimation and interpretation of coefficients.
o Assessing model fit and making predictions.

40. Probability and Statistics in Decision Making:

o Decision theory and utility.
o Expected value and decision-making under uncertainty.
o Risk assessment and risk management.

41. Introduction to Bayesian Statistics (optional):

o Bayesian probability and Bayes' theorem.
o Prior and posterior distributions.
o Bayesian inference and decision-making.

42. Introduction to Statistical Software:

o Hands-on experience with statistical software packages like R,
Python, or SPSS.

o Data manipulation, analysis, and visualization using software
tools.

Learning and Teaching Strategies

ekaddly @ladl Sl) Aol
Learning and teaching strategies for the Probabilities and statistics basics
course for the Network department can include a combination of the following:

1. Active Learning: Encourage active learning by incorporating activities
that involve student participation, such as group discussions, problem-
solving exercises, case studies, and hands-on data analysis projects.
This approach helps students actively engage with the material, apply
concepts, and develop a deeper understanding.

. Real-World Examples: Use real-world examples and applications to
demonstrate the relevance and practicality of probability and statistics.
Relating the course content to everyday scenarios, industries, and

SIS research fields can enhance students' understanding and motivation.

. Visual Representations: Utilize visual representations, such as charts,
graphs, diagrams, and interactive simulations, to illustrate statistical
concepts and relationships. Visual aids can help students visualize
abstract concepts, interpret data, and identify patterns more effectively.

. Technology Integration: Integrate statistical software tools, such as R,
Python, or spreadsheet applications, into the course to facilitate data
analysis and exploration. This hands-on experience with real-world data
and statistical software enhances students' data manipulation and
analysis skills.

. Scaffolding: Break down complex topics into smaller, more manageable
subtopics and provide scaffolding support to guide students through the
learning process. Start with foundational concepts and gradually
introduce more advanced topics, building upon prior knowledge.

. Formative Assessment: Incorporate formative assessments, such as
quizzes, in-class exercises, and homework assignments, to gauge
students’ understanding and provide feedback. This allows students to
identify areas of weakness and reinforces learning throughout the
course.

. Problem-Based Learning: Present students with real-world problems or
case studies that require the application of probability and statistical
methods. This approach encourages critical thinking, problem-solving
skills, and the integration of theoretical knowledge into practical
scenarios.

. Collaborative Learning: Promote collaboration and peer interaction
through group activities, discussions, and projects. Working in teams
allows students to learn from each other, share perspectives, and
develop teamwork and communication skills.

. Practical Exercises and Experiments: Incorporate practical exercises and
experiments that involve collecting and analyzing data. This hands-on
approach provides students with firsthand experience in data collection,
manipulation, and statistical analysis, reinforcing theoretical concepts.

10. Reflection and Metacognition: Encourage students to reflect on
their learning process and develop metacognitive skills. Regularly
prompt students to evaluate their understanding, identify areas of
improvement, and reflect on their learning strategies.

11. Office Hours and Support: Provide opportunities for
individualized support, such as office hours or online discussion forums,
where students can seek clarification, ask questions, and receive
personalized guidance.

12. Engage with Resources: Encourage students to explore
additional resources, such as textbooks, online tutorials, academic
journals, or educational videos, to deepen their understanding and
explore specific topics of interest.

By implementing these strategies, instructors can create an engaging and
effective learning environment that fosters students' understanding, critical
thinking skills, and practical application of probability and statistical concepts.

Student Workload (SWL)

Lc}:.,w\ Vo) O gneo g,JUaU @“b*” Jedl

Structured SWL (h/sem)

Bt I3l Ial) @haziall gl Jood!

63

Structured SWL (h/w)
e gl (Ul @laiiall (gulyll Josnll

Unstructured SWL (h/sem)

Jradl I3l CIUall @laziall e gl Josd!

Unstructured SWL (h/w)
b gl JUal) platiall p& bl Josell

Total SWL (h/sem)

il M5 CIUal S gyl Jass)

125

Module Evaluation

Time/Number

Weight (Marks)

Week Due

Relevant Learning

Outcome

Formative

assessment

Quizzes

5and 10

LO #1, #2 and #10, #11

Assignments

2and 12

LO #3, #4 and #6, #7

Projects / Lab.

Continuous

All

Report

13

LO #5, #8 and #10

Summative

assessment

Midterm Exam

7

LO #1 - #7

Final Exam

50% (50)

16

All

Total assessment

100% (100 Marks)

Delivery Plan (Weekly Syllabus)

Material Covered

Week 1: Introduction to Probabilities and statistics

Basic concepts of probability: sample spaces, events, and outcomes.
Probability axioms and properties.

Combinatorics: permutations and combinations.

Conditional probability and independence.

Week 2: Introduction to Probabilities and statistics

« Combinatorics: permutations and combinations.
« Conditional probability and independence.

Week 3: Discrete Probability Distributions

e Random variables and probability mass functions.
o Common discrete probability distributions: binomial, Poisson, and geometric
distributions.

Week 4: Discrete Probability Distributions

o Expected value and variance of discrete random variables.
« Joint probability distributions and conditional distributions.

Week 5: Continuous Probability Distributions

« Continuous random variables and probability density functions.
« Common continuous probability distributions: uniform, exponential, normal
(Gaussian), and gamma distributions.

Week 6: Continuous Probability Distributions

o Expected value and variance of continuous random variables.
« Joint probability distributions and conditional distributions.

Week 7: Sampling and Data Description

e Sampling techniques and sampling distributions.
o Descriptive statistics: measures of central tendency, measures of dispersion, and
graphical representations of data.

Week 8: Sampling and Data Description

« Data exploration and visualization.

Week 9: Estimation and Confidence Intervals

« Point estimation: methods for estimating population parameters.
« Interval estimation: construction and interpretation of confidence intervals.

Week 10: Estimation and Confidence Intervals

o Sample size determination for estimation

Week 11: Hypothesis Testing

e Null and alternative hypotheses.
o Test statistics and p-values.

Week 12: Hypothesis Testing

o Types of errors and power of tests.
o Common hypothesis tests: z-tests, t-tests, chi-square tests.

Week 13: Inference for Means and Proportions

« Inference for population means: one-sample, independent samples, and paired
samples.
« Inference for population proportions: one-sample and two-sample proportions.

Week 14

Week 14: Analysis of Variance (ANOVA)

o One-way ANOVA: comparing means of multiple groups.
e Post hoc tests and multiple comparisons.
o Two-way ANOVA: analyzing the effects of two factors.

Week 15

Week 15: Review and Final Projects

« Review of key concepts covered throughout the course
« Completion of final projects or assignments demonstrating understanding of IT basics

Week 16

Preparatory week before the final Exam

Delivery Plan (Weekly Lab. Syllabus)

il (£)l gl

Material Covered

Introduction to R

¢ Introduction to R environment and RStudio.
e Basic R syntax, data types, and objects.
¢ Reading data into R and basic data manipulation.

Descriptive Statistics in R

2. Calculating measures of central tendency and dispersion.
3. Creating frequency tables and histograms.
4. Exploratory data analysis with R graphics.

Probability Distributions in R

1. Generating random numbers from common probability distributions.
2. Calculating probabilities and percentiles.

3. Plotting probability density functions and cumulative distribution functions.

Sampling and Confidence Intervals in R

2. Simple random sampling in R.
3. Estimating population parameters and constructing confidence intervals.
4. Visualizing sampling distributions.

Hypothesis Testing in R

2. Performing hypothesis tests for means and proportions.
3. Interpreting p-values and making decisions.
4. Conducting t-tests and chi-square tests in R.

Analysis of Variance (ANOVA) in R

2. One-way ANOVA and post hoc tests.

3. Analyzing and interpreting ANOVA results.

4. Visualizing ANOVA data with boxplots and interaction plots.

Simple Linear Regression in R

e Fitting a simple linear regression model.
o Assessing model fit and interpreting coefficients.
e Predicting outcomes and evaluating the model.

Multiple Linear Regression in R

o Extending the simple linear regression to multiple predictors.
e Model diagnostics and interpretation of results.
Handling categorical predictors and interactions

Logistic Regression in R

¢ Introduction to logistic regression.
¢ Fitting logistic regression models and interpreting coefficients.
e Model assessment and prediction.

Week 10

Time Series Analysis in R

¢ Introduction to time series data.
e Time series decomposition and forecasting.
¢ Analyzing and visualizing time series data.

: Nonparametric Methods in R

¢ Wilcoxon rank-sum test and Wilcoxon signed-rank test.
o Kruskal-Wallis test and Friedman test.
e Conducting nonparametric tests in R.

Week 11

Bayesian Statistics in R (optional)

¢ Introduction to Bayesian inference.
Week 12 o Fitting Bayesian models and sampling from posterior distributions.
¢ Interpreting and comparing Bayesian results.

: Data Analysis Projects

¢ Students work on data analysis projects applying concepts and techniques learned
Week 13 throughout the course.
e Guidance, support, and feedback provided by the instructor during lab sessions.

: Data Analysis Projects

¢ Students work on data analysis projects applying concepts and techniques learned
Week 14 throughout the course.
e Guidance, support, and feedback provided by the instructor during lab sessions.

: Review and Wrap-up

¢ Recap of key concepts and techniques covered throughout the course.
o Q&A sessions, review exercises, and additional practice.

Learning and Teaching Resources

wf).‘\.ﬂb M&U\JJL@A
Text Available in the Library?

Required Texts

Recommended

Texts

Websites

Grading Scheme
Ol alases

Group Grade ERV:F Marks % Definition

A - Excellent Ha 90- 100 Outstanding Performance

B - Very Good 80 -89 Above average with some errors

C - Good vE, 70-79 Sound work with notable errors

D - Satisfactory i 60 - 69 Fair but with major shortcomings

E - Sufficient A& 50-59 Work meets minimum criteria

Fail Group FX - Fail (A laadl WB) Cly | (45-49) More work required but credit awarded
(0-49) F - Fail sl (0-44) Considerable amount of work required

Success Group
(50 - 100)

Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a
mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT
to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the
automatic rounding outlined above.

MODULE DESCRIPTION FORM

duwoy I Balell Cauog Zdged

Module Information
Loy 1 B3Ledl o glas

Module Title Probabilities and Statistics | Module Delivery

Module Type SUPPORT Theory
X Lecture

Module Code NTllO X Lab

O Tutorial
O Practical

SWL (hr/sem) 125 O Seminar

ECTS Credits 5

Module Level Semester of Delivery

Administering Department College CSM

Module Leader Name e-mail E-mail

Module Leader’s Acad. Title Module Leader’s Qualification

Module Tutor Name (if available) e-mail E-mail

Peer Reviewer Name Name e-mail E-mail

Scientific Committee Approval Date Version Number

Relation with other Modules

31 Ayl sl gall ae A8l

Prerequisite module Semester

Co-requisites module Semester

Module Aims, Learning Outcomes and Indicative Contents
LalinYl Olgizally platll g5l g Ayl Bolell Ll

The Probabilities and statistics basics course for the Networks department aims
to achieve the following objectives:

10. Understand the fundamental concepts of probability theory:
Students should develop a solid foundation in probability theory,
including concepts such as sample spaces, events, probability axioms,
conditional probability, and independence.

11. Apply probability concepts to real-world scenarios: Students
should be able to apply probability theory to solve problems and
analyze real-world situations that involve uncertainty and randomness.
This includes calculating probabilities, understanding the concept of
expected value, and analyzing random variables.

12. Comprehend statistical concepts and methods: Students should
Module Objectives acquire a good understanding of statistical concepts, such as random
Lyl B3lodl Blual variables, probability distributions, central tendency, variability,
hypothesis testing, confidence intervals, and regression analysis.

13. Perform statistical data analysis: Students should learn how to
collect, organize, and analyze data using appropriate statistical
techniques. This includes techniques for data exploration,
summarization, and inference.

14, Interpret and communicate statistical results: Students should be
able to interpret the results of statistical analyses and effectively
communicate their findings to others. This involves understanding the
limitations of statistical methods and drawing appropriate conclusions
from the data.

15. Apply statistical software: Students should gain hands-on
experience with statistical software packages commonly used for data
analysis, such as R, Python, or SPSS. They should be able to use these

tools to perform statistical computations and generate graphical
representations of data.

16. Develop critical thinking and problem-solving skills: The course
aims to enhance students' critical thinking abilities by challenging them
to analyze problems, evaluate evidence, and make informed decisions
based on statistical reasoning.

17. Foster a strong mathematical foundation: Probability and
Statistics often require a solid understanding of mathematical concepts,
so the course aims to strengthen students' mathematical skills, including
algebra, calculus, and basic mathematical notation.

18. Prepare for further study in related fields: The course may serve
as a prerequisite or provide a foundation for more advanced courses in
areas such as machine learning, data science, economics, psychology, or
engineering, where probabilistic and statistical methods are commonly
used.

Module Learning
Outcomes

Balall @l ol e
Lol

Upon successful completion of the Probabilities and statistics basics course for
the Networks department, students should be able to demonstrate the following
learning outcomes:

11. Understand fundamental probability concepts: Students should
be able to demonstrate a strong understanding of basic probability
concepts, including sample spaces, events, probability axioms,
conditional probability, and independence.

12. Apply probability techniques: Students should be able to apply
probability techniques to solve problems in various contexts, such as
calculating probabilities of events, determining expected values, and
understanding concepts like random variables and probability
distributions.

13. Analyze statistical data: Students should be able to collect,
organize, and analyze data using appropriate statistical methods. This
includes understanding descriptive statistics, graphical representations
of data, and basic inferential statistics.

14. Interpret statistical results: Students should be able to interpret
the results of statistical analyses and draw meaningful conclusions. This
involves understanding concepts such as confidence intervals,
hypothesis testing, p-values, and statistical significance.

15. Apply statistical software: Students should be proficient in using
statistical software packages (e.g., R, Python, SPSS) to perform data
analysis and generate graphical representations of data.

16. Critically evaluate statistical claims: Students should be able to

critically evaluate statistical claims and arguments presented in various
contexts, such as scientific research, news articles, and advertisements.
They should be able to identify common fallacies and recognize the
importance of sound statistical reasoning.

17. Communicate statistical information: Students should be able to
effectively communicate statistical information to both technical and
non-technical audiences. This includes presenting findings, using
appropriate visualizations, and conveying the limitations and
implications of statistical analyses.

18. Apply statistical methods to real-world problems: Students
should be able to apply their knowledge of probability and statistics to
real-world problems in various fields, such as business, social sciences,
engineering, or healthcare. They should be able to identify appropriate
statistical methods and apply them to analyze and solve problems.

19. Develop critical thinking and problem-solving skills: The course
should foster the development of critical thinking skills by engaging
students in problem-solving activities that require them to think
analytically, reason statistically, and make informed decisions based on
data.

Prepare for further study or careers: The course should provide a
solid foundation for students who wish to pursue further study or
careers in fields that require a strong understanding of probability and
statistics, such as data science, machine learning, economics,
psychology, or research.

These learning outcomes reflect the overarching goals of a Probabilities and
Statistics course, which aim to equip students with the knowledge, skills, and
tools necessary to understand and analyze data, make informed decisions, and
apply statistical methods in various contexts.

The indicative contents of the Probabilities and Statistics basics course for the
computer department may include the following topics:

43. Introduction to Probability:

o Basic concepts of probability: sample spaces, events, and
outcomes.

4l bgioall o Probability axioms and properties.

o Combinatorics: permutations and combinations.

o Conditional probability and independence.

44. Discrete Probability Distributions:

Indicative Contents

o Random variables and probability mass functions.

Common discrete probability distributions: binomial, Poisson,
and geometric distributions.

o Expected value and variance of discrete random variables.

o Joint probability distributions and conditional distributions.

45. Continuous Probability Distributions:

o Continuous random variables and probability density functions.

o Common continuous probability distributions: uniform,
exponential, normal (Gaussian), and gamma distributions.

o Expected value and variance of continuous random variables.

o Joint probability distributions and conditional distributions.

46. Sampling and Data Description:

o Sampling techniques and sampling distributions.

o Descriptive statistics: measures of central tendency, measures of
dispersion, and graphical representations of data.

o Data exploration and visualization.

47. Estimation and Confidence Intervals:

o Point estimation: methods for estimating population parameters.

o Interval estimation: construction and interpretation of confidence
intervals.

o Sample size determination for estimation.

48. Hypothesis Testing:

Null and alternative hypotheses.
Test statistics and p-values.
Types of errors and power of tests.
o Common hypothesis tests: z-tests, t-tests, chi-square tests.

49. Inference for Means and Proportions:

o Inference for population means: one-sample, independent
samples, and paired samples.

o Inference for population proportions: one-sample and two-
sample proportions.

50. Analysis of Variance (ANOVA):

o One-way ANOVA: comparing means of multiple groups.
o Post hoc tests and multiple comparisons.
o Two-way ANOVA: analyzing the effects of two factors.

51. Simple Linear Regression:

o The simple linear regression model.
o Least squares estimation and interpretation of coefficients.
o Assessing model fit and making predictions.

52. Probability and Statistics in Decision Making:

o Decision theory and utility.
o Expected value and decision-making under uncertainty.
o Risk assessment and risk management.

53. Introduction to Bayesian Statistics (optional):

o Bayesian probability and Bayes' theorem.
o Prior and posterior distributions.
o Bayesian inference and decision-making.

54. Introduction to Statistical Software:

Hands-on experience with statistical software packages like R,
Python, or SPSS.

Data manipulation, analysis, and visualization using software
tools.

Learning and Teaching Strategies

Learning and teaching strategies for the Probabilities and statistics basics
course for the Network department can include a combination of the following:

13. Active Learning: Encourage active learning by incorporating
activities that involve student participation, such as group discussions,
problem-solving exercises, case studies, and hands-on data analysis
projects. This approach helps students actively engage with the material,
apply concepts, and develop a deeper understanding.

Real-World Examples: Use real-world examples and
applications to demonstrate the relevance and practicality of probability
and statistics. Relating the course content to everyday scenarios,
industries, and research fields can enhance students' understanding and

Strategies motivation.

Visual Representations: Utilize visual representations, such as
charts, graphs, diagrams, and interactive simulations, to illustrate
statistical concepts and relationships. Visual aids can help students
visualize abstract concepts, interpret data, and identify patterns more
effectively.

Technology Integration: Integrate statistical software tools, such
as R, Python, or spreadsheet applications, into the course to facilitate
data analysis and exploration. This hands-on experience with real-world
data and statistical software enhances students' data manipulation and
analysis skills.

Scaffolding: Break down complex topics into smaller, more
manageable subtopics and provide scaffolding support to guide students
through the learning process. Start with foundational concepts and
gradually introduce more advanced topics, building upon prior
knowledge.

Formative Assessment: Incorporate formative assessments, such
as quizzes, in-class exercises, and homework assignments, to gauge
students' understanding and provide feedback. This allows students to
identify areas of weakness and reinforces learning throughout the
course.

19. Problem-Based Learning: Present students with real-world
problems or case studies that require the application of probability and
statistical methods. This approach encourages critical thinking,
problem-solving skills, and the integration of theoretical knowledge into
practical scenarios.

20. Collaborative Learning: Promote collaboration and peer
interaction through group activities, discussions, and projects. Working
in teams allows students to learn from each other, share perspectives,
and develop teamwork and communication skills.

21. Practical Exercises and Experiments: Incorporate practical
exercises and experiments that involve collecting and analyzing data.
This hands-on approach provides students with firsthand experience in
data collection, manipulation, and statistical analysis, reinforcing
theoretical concepts.

22. Reflection and Metacognition: Encourage students to reflect on
their learning process and develop metacognitive skills. Regularly
prompt students to evaluate their understanding, identify areas of
improvement, and reflect on their learning strategies.

23. Office Hours and Support: Provide opportunities for
individualized support, such as office hours or online discussion forums,
where students can seek clarification, ask questions, and receive
personalized guidance.

24, Engage with Resources: Encourage students to explore
additional resources, such as textbooks, online tutorials, academic
journals, or educational videos, to deepen their understanding and
explore specific topics of interest.

By implementing these strategies, instructors can create an engaging and
effective learning environment that fosters students' understanding, critical
thinking skills, and practical application of probability and statistical concepts.

Student Workload (SWL)

Lcj.f.M Vol O g0 g,JU_’:.U wb..\.!\ gre]

Structured SWL (h/sem) 63 Structured SWL (h/w)

il I3l LIl elaiedl (guhyldl ozl e gl Ul @lasiall (gulydl Josell
Unstructured SWL (h/sem) 6 Unstructured SWL (h/w)

il I LIl elasiall e quhudl Josdd! b gl JUal) plaiiall s (guhll Jonll
Total SWL (h/sem)

il M5 CIUall U1 gyl Jass)

125

Module Evaluation

Relevant Learning
Time/Number Weight (Marks) Week Due
Outcome

Quizzes 10% (10) 5and 10 LO #1, #2 and #10, #11

Formative Assignments 10% (10) 2and 12 LO #3, #4 and #6, #7

Report 10% (10) 13 LO #5, #8 and #10
Summative Midterm Exam 10% (10) 7 LO #1 - #7
assessment Final Exam 50% (50) 16 All

Total assessment 100% (100 Marks)

(
(
assessment Projects / Lab. 10% (10) Continuous | All
(
(

Delivery Plan (Weekly Syllabus)

Material Covered

Week 1: Introduction to Probabilities and statistics

Basic concepts of probability: sample spaces, events, and outcomes.
Probability axioms and properties.

Combinatorics: permutations and combinations.

Conditional probability and independence.

Week 2: Introduction to Probabilities and statistics

o Combinatorics: permutations and combinations.

Conditional probability and independence.

Week 3: Discrete Probability Distributions

Random variables and probability mass functions.
Common discrete probability distributions: binomial, Poisson, and geometric
distributions.

Week 4: Discrete Probability Distributions

Expected value and variance of discrete random variables.
Joint probability distributions and conditional distributions.

Week 5: Continuous Probability Distributions

Continuous random variables and probability density functions.
Common continuous probability distributions: uniform, exponential, normal
(Gaussian), and gamma distributions.

Week 6: Continuous Probability Distributions

Expected value and variance of continuous random variables.
Joint probability distributions and conditional distributions.

Week 7: Sampling and Data Description

Sampling techniques and sampling distributions.
Descriptive statistics: measures of central tendency, measures of dispersion, and
graphical representations of data.

Week 8: Sampling and Data Description

Data exploration and visualization.

Week 9: Estimation and Confidence Intervals

Point estimation: methods for estimating population parameters.
Interval estimation: construction and interpretation of confidence intervals.

Week 10: Estimation and Confidence Intervals

Sample size determination for estimation

Week 11

Week 11: Hypothesis Testing

Null and alternative hypotheses.

o Test statistics and p-values.

Week 12

Week 12: Hypothesis Testing

e Types of errors and power of tests.
o Common hypothesis tests: z-tests, t-tests, chi-square tests.

Week 13

Week 13: Inference for Means and Proportions

« Inference for population means: one-sample, independent samples, and paired
samples.
« Inference for population proportions: one-sample and two-sample proportions.

Week 14

Week 14: Analysis of Variance (ANOVA)

o One-way ANOVA: comparing means of multiple groups.
e Post hoc tests and multiple comparisons.
o Two-way ANOVA: analyzing the effects of two factors.

Week 15

Week 15: Review and Final Projects

« Review of key concepts covered throughout the course
o Completion of final projects or assignments demonstrating understanding of IT basics

Preparatory week before the final Exam

Delivery Plan (Weekly Lab. Syllabus)

Material Covered

Introduction to R

¢ Introduction to R environment and RStudio.
e Basic R syntax, data types, and objects.
¢ Reading data into R and basic data manipulation.

Descriptive Statistics in R

5. Calculating measures of central tendency and dispersion.
6. Creating frequency tables and histograms.
7. Exploratory data analysis with R graphics.

Probability Distributions in R

4. Generating random numbers from common probability distributions.

5. Calculating probabilities and percentiles.
6. Plotting probability density functions and cumulative distribution functions.

Sampling and Confidence Intervals in R

5. Simple random sampling in R.
6. Estimating population parameters and constructing confidence intervals.
7. Visualizing sampling distributions.

Hypothesis Testing in R

5. Performing hypothesis tests for means and proportions.
6. Interpreting p-values and making decisions.
7. Conducting t-tests and chi-square tests in R.

Analysis of Variance (ANOVA) in R

5. One-way ANOVA and post hoc tests.

6. Analyzing and interpreting ANOVA results.

7. Visualizing ANOVA data with boxplots and interaction plots.

Simple Linear Regression in R

o Fitting a simple linear regression model.
e Assessing model fit and interpreting coefficients.
e Predicting outcomes and evaluating the model.

Multiple Linear Regression in R

e Extending the simple linear regression to multiple predictors.
¢ Model diagnostics and interpretation of results.
Handling categorical predictors and interactions

Logistic Regression in R

¢ Introduction to logistic regression.
¢ Fitting logistic regression models and interpreting coefficients.
e Model assessment and prediction.

Week 10

Time Series Analysis in R

e Introduction to time series data.
e Time series decomposition and forecasting.
e Analyzing and visualizing time series data.

: Nonparametric Methods in R

Week 11 ¢ Wilcoxon rank-sum test and Wilcoxon signed-rank test.
e Kruskal-Wallis test and Friedman test.
e Conducting nonparametric tests in R.

Bayesian Statistics in R (optional)

¢ Introduction to Bayesian inference.
Week 12 e Fitting Bayesian models and sampling from posterior distributions.
¢ Interpreting and comparing Bayesian results.

: Data Analysis Projects

¢ Students work on data analysis projects applying concepts and techniques learned
Week 13 throughout the course.
e Guidance, support, and feedback provided by the instructor during lab sessions.

: Data Analysis Projects

o Students work on data analysis projects applying concepts and techniques learned
Week 14 throughout the course.
e Guidance, support, and feedback provided by the instructor during lab sessions.

: Review and Wrap-up

Week 15 ¢ Recap of key concepts and techniques covered throughout the course.
o Q&A sessions, review exercises, and additional practice.

Learning and Teaching Resources

WJJ.IJB {o.laﬂ\)bl,,a.o
Text Available in the Library?

Required Texts

Recommended
Texts
Websites

Grading Scheme

SESRey:

Group Grade ST Marks % Definition

A - Excellent H 90- 100 Outstanding Performance

B - Very Good 80 -89 Above average with some errors

Success Group

(50 - 100) C-Good 2 70-79 Sound work with notable errors

D - Satisfactory i 60 - 69 Fair but with major shortcomings

E - Sufficient o 50-59 Work meets minimum criteria

Fail Group FX - Fail (dlandl d) Cwly | (45-49) More work required but credit awarded

(0-49) F - Fail el (0-44) Considerable amount of work required

Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a
mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT
to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the
automatic rounding outlined above.

MODULE DESCRIPTION FORM

dawly ! Balell Cauog Zdged

Module Information
Ayl Bolall Sleglas

Module Title Arabic Language Module Delivery

Module Type Support Theory

Lecture

Module Code uUoM101
“ O Lab

ECTS Credits 2 X Tutorial

1 Practical
SWL (hr/sem) 50 L] Seminar

Module Level 1 Semester of Delivery

Administering Department College CSM

Module Leader e-mail

Module Leader’s Acad. Title Module Leader’s Qualification

Module Tutor e-mail

Peer Reviewer Name e-mail

Scientific Committee Approval

Date 18/06/2023 Version Number

Relation with other Modules

EES RNV PN P YA

Prerequisite module Semester

Co-requisites module Semester

Module Aims, Learning Outcomes and Indicative Contents
oLVl Gbgizally platd] g5L5 9 duwshy) 8Ll CBlaa]
o o S Slodle 1 daludl eyl &l oy 23yl I e LByl
dudadll Jozddly dpnsedl Jozdly doyall Aol pludly doyal) dhozll 45520
due b gl dduol OB elgun t0lyeNl B> (de Cypaill
IAeVlg dovall o o 1yl Jaslb Gl A pas
Sailly po3lll o o el Jaddl IRl A8 pme
Module Objectives Ol S oo @)l Jaddl Ul Adya
Ay 8,505 9 saall HUS 3,
1 (3 bl ledle dyma
Byagll oy delgd @las
A gaually cdbogapell £ LS Ayl e Byatll -10
Sy pralSiall) dasladl sUasYI i a3 Vg J3 -11
(5 gkl gale dby20 -12
séu&j)’\ g.')j.l.w‘)nj.blﬁ 48,20 -13
onalaiall G Qolud)l (g g oalll B9l dpals 1 dga) hlgs las -14
e pd IS Slodle 1 cdoluadl dinyad &b o 1y yall o360 CIall Coymy O
Adad)) Jozlly dnoadl Jazddly duyad! ozl pludly doyall dosdl L] olaty O
dusyd gl daduol OB elgun toleNl OS> (Ao Cyaill
IMNeVlg dovsall o (po 1@l Jaadl LIl By 0
Sy poslll Com e)l Jadll Il ela; O
oA Cwm e)l Jaddl Il A3 m0
@iy 8,555 3 sall BUS Byl CIUall Coyne
M1 (3 @Al ledal LI 45
Balal) lasll wlrysee f i:jﬁ“) selgs LIl MJ::O‘
Ayl A gesally cdbogsyall el S Al e L)l Byme -10
CUSUly cralSiall s dxsladl slasYl 1 a3 Ye J3 -11
(sl Ogldl e Cpanll <12
QLY Qg gale ddyas -13
ealaiall G Cgludl pussig (S galll B9l dnais 1dugs) whlge e @ladll -14
Indicative Contents [2 dclis]din pud S Oladle Sl cdoludl el yas LU po 1y pall oD (Je Bpadl -1

dulyud) Baladl CBlual

Module Learning
Outcomes

DolanYl bgisal| 2 delu cdudadll Jozdly dnawdl Jazly dpyall dlazell pludly duyall Aozl d8yn0
2 dcluw cdusyd gl Aol i elguw 10l B> e (8,23l

2 delus cMeVlg dall Ey oo 13yl Jaadb CIUall 33ym0

2 delu ¢dailly pg3lll G (po @)l)l Gl ddya0

2 4l (o)l v o @l Jadll CIUal 9520

2 dcluo ciig 8,55 9 sl LS (3,b

2 aslu (X1 & @B oladle d3ya0

2 dclw Biagll oy delgd @las

2 deli b gunally (b gyall el LS &yl (Je B yanll

2 delu ¢ OUSUly pralSial (s dasladl sUasYI ;a5 Vg U3

2 delus c g3l gl gale d8ymn

2 4l (JLadYl glud)l gale 43,00

2 delus copalatall U Cgludl sy (S gaddl B9l dundd 1 53] ©lylge lal]

Learning and Teaching Strategies

odatly easll bl il

Sl e aSjlanall e Ol gumdS (B> gll 0 (0285 (3 Lgeisd w1 Gatiy)] Al
Strategies Bl i 3 lgmwgly (Sl St Ollge s ge ¢ dououall B gaall dulaSy g4l X1 3
Bl ool 1531 & Sl IV (05 Aol Gpmalal) ollly Uguadll IS o IS 30 s

Ml 088 S lgadl dT dasdl pany pesass Gl

Student Workload (SWL)

le guwol V0 J O guumn LIl L;Wb-U‘ gre]
Structured SWL (h/sem) 3 Structured SWL (h/w)
et UMl (el elasiadl (quhydl Joxl e el Clall plaiiall (gl | Jo!
Unstructured SWL (h/sem) 18 Unstructured SWL (h/w)
)l INs Il elauall 48 gobdl Josdl b gl JUal) plaiiall s (gl Josrll
Total SWL (h/sem)

Bl I3l LIUall JSI1 gyl Jonll

50

Module Evaluation

Relevant Learning
Time/Number Weight (Marks) Week Due
Outcome

Formative Quizzes 3 15% (15) 5and 10 LO #1, #2 and #10, #11

assessment

Assignments 15% (15) 2and 12

LO #3, #4 and #6, #7

Projects / Lab.

Report 10% (10) 13

LO #5, #8 and #10

Summative

assessment

Midterm Exam 10% (10) 7

LO #1 - #7

Final Exam 50% (50)

All

Total assessment 100% (100 Marks)

Delivery Plan (Weekly Syllabus)

Sl (£ 5uudl zlginll

Material Covered

Week 1

Week 2

LLaallg Ao : Lgaludl ¢ Lgisyad el dacnl

Week 3

Beed el e >

Week 4

Iy dovall Eum o 1y)l Janl

Week 5

Sailly poilll o (yo (g2l Jodl

Week 6

el G o gl Jadd!

Week 7

Olisl

Week 8

41_,}359 cBJSJ.S 1]l

Week 9

PS8 @i A ledle

Week 10

Bpogll oy delyd

Week 11

A gually ¢db gy yall £ U1

Week 12

Sl pelSiadl G dasladl clasYl a5 Vg JB

Week 13

sl u_gL—u;BJl

Week 14

Gyl oaludly

Week 15

Onalaiall G gl cranig ¢S 93l B9l Al 1duga) lylge

Week 16

Jad)l dolgs Olowal

Delivery Plan (Weekly Lab. Syllabus)

Material Covered

Learning and Teaching Resources

U"‘..JJMB M‘JJL@A
Text Available in the Library?

Required Texts G (plaae Fidl tdosall Gug)ll pol No

Recommended

Alyoludl uold .5 Lgaludly Leadls :dn ya)l dlasdl No
Texts)

Websites https://www.almrsal.com/post/923401

Grading Scheme
C.’)L?-)..U\ Llaxo
Group Grade el Marks % | Definition
A - Excellent Sl 90-100 Outstanding Performance
B - Very Good [SENVES 80-89 Above average with some errors
C-Good Ve 70-79 Sound work with notable errors

Success Group
(50 - 100)

D - Satisfactory Jowgio 60 - 69 Fair but with major shortcomings

E - Sufficient Jgaie 50-59 Work meets minimum criteria

Fail Group FX - Fail (Adlaadl W8) Cly | (45-49) More work required but credit awarded
(0-49) F - Fail sl (0-44) Considerable amount of work required

Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a
mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT
to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the
automatic rounding outlined above.

MODULE DESCRIPTION FORM

dawwyl Baledl Cauo g i ged

Module Information
Loy) B3l oo glas

Module Title Data Structures Module Delivery

Module Type Core X Theory
X Lecture
X Lab

Module Code a Tutorllal
O Practical
0 Seminar

Module Aims, Learning Outcomes and Indicative Contents
LolinYl Olgizally platll g5l g Ayl Bolell Ll
The objectives of the "Data Structures" course are:

1. Understanding Fundamental Data Structures: To introduce students to
the fundamental data structures such as arrays, linked lists, stacks,
queues, trees, and graphs, and their characteristics, operations, and
applications.

Implementing Data Structures: To provide students with hands-on
experience in implementing data structures using programming
languages, allowing them to understand the internal workings and
mechanisms of these structures.

Algorithmic Problem-Solving: To develop students' problem-solving
skills by designing and implementing algorithms using appropriate data
structures, and to apply these algorithms to solve real-world problems
efficiently.

. Performance Optimization: To teach students techniques for optimizing
Module Objectives the performance of data structures and algorithms, such as choosing the
most suitable data structure for a given problem and employing efficient
algorithms for common operations.

Teamwork and Collaboration: To encourage teamwork and

collaboration through group projects and assignments, enabling students

to work effectively in teams and learn from each other's perspectives
and approaches.

Critical Thinking and Analysis: To foster critical thinking and analytical

skills by challenging students to evaluate, modify, and improve existing

data structures and algorithms, and to adapt them to new problem
scenarios.

Practical Application: To demonstrate the practical application of data

structures in various domains such as software development, database

management, networking, and artificial intelligence, emphasizing their
relevance in real-world scenarios.

dulyd] Baledl Colual

By achieving these objectives, students will develop a strong foundation in data
structures and acquire the skills necessary to design, implement, and analyze
efficient algorithms and data structures for solving complex problems

Module Learning
Outcomes

Balall @l ol e
LW

Upon completion of the "Data Structures” course, students will be able to:

1. Understand and Identify Data Structures: Identify and differentiate
various data structures such as arrays, linked lists, stacks, queues, trees,
and graphs, and understand their characteristics, advantages, and
limitations.

Implement Data Structures: Implement data structures using
programming languages, demonstrating proficiency in coding and
understanding the internal workings and mechanisms of data structures.
Design and Implement Algorithms: Design and implement algorithms
to solve problems efficiently using appropriate data structures,
considering factors such as time complexity, space complexity, and
code readability.

Apply Data Structures to Real-World Problems: Apply data structures
to real-world scenarios, such as database management, network routing,
and algorithmic problem-solving, effectively solving complex problems
using the appropriate data structure and algorithmic approach.

Evaluate and Optimize Performance: Evaluate the performance of data
structures and algorithms, identify bottlenecks, and optimize their
efficiency through algorithmic improvements or selecting more suitable
data structures.

Collaborate in Team Projects: Work effectively in teams to design and
implement data structure-related projects, collaborating with team
members to achieve project objectives and deliver high-quality
solutions.

Apply Critical Thinking and Problem-Solving Skills: Apply critical
thinking and problem-solving skills to analyze problems, break them
down into smaller subproblems, and devise effective data structure-
based solutions.

Communicate Data Structure Concepts: Communicate data structure
concepts and solutions effectively, both orally and in written form,
using appropriate terminology and visual representations.

Continuously Learn and Adapt: Recognize the dynamic nature of data
structures and algorithms, and demonstrate the ability to learn and adapt
to new data structures and algorithmic techniques as they emerge in the
evolving field of computer science.

Indicative Contents
dyoliyVl Obgisal

The indicative contents of the "Data Structures™ course may include:

1. Introduction to Data Structures:
o Overview of data structures and their significance in problem-
solving.
o Basic terminology and concepts related to data structures.
o Abstract data types and their implementation.
2. Arrays and Linked Lists:
o Array representation and operations (insertion, deletion,
searching).
o Singly linked lists, doubly linked lists, and circular linked lists.
o Linked list operations (insertion, deletion, searching, traversal).
3. Stacks and Queues:

o Stack data structure and its operations (push, pop, peek).

o Queue data structure and its operations (enqueue, dequeue).

o Applications of stacks and queues.

Trees and Binary Trees:

o Tree terminology, concepts, and properties.

o Binary tree representation and traversal algorithms (preorder,
inorder, postorder).

o Binary search trees and their operations (insertion, deletion,
searching).

Heaps and Priority Queues:

o Heap data structure and its properties.

o Priority queue implementation using heaps.

o Heap operations (insertion, deletion, heapify).

Graphs:

o Graph terminology, types, and representations.

o Graph traversal algorithms (depth-first search, breadth-first
search).

o Shortest path algorithms (Dijkstra's algorithm, Bellman-Ford
algorithm).

Hashing and Hash Tables:

o Hashing concepts and techniques.

o Hash functions and collision resolution strategies.

o Hash table implementation and operations (insertion, deletion,
searching).

. Advanced Data Structures:

o Advanced topics such as balanced search trees (AVL trees, Red-
Black trees), B-trees, and tries.

Advanced graph algorithms (minimum spanning trees,
topological sorting).

o Advanced hashing techniques (dynamic hashing, cuckoo
hashing).

. Applications and Case Studies:

o Real-world applications of data structures in software
development, database management, networking, and other
domains.

Case studies highlighting the selection and utilization of
appropriate data structures for specific problems.

The above indicative contents provide a broad overview of the topics typically
covered in a "Data Structures" course. The actual course content may vary
depending on the specific curriculum and instructor.

Learning and Teaching Strategies

The "Data Structures” course can be effectively taught using a combination of
learning and teaching strategies, including:

Strategies
1. Lectures: Engaging lectures delivered by the instructor to introduce and
explain key concepts, theories, and techniques related to data structures.

The lectures can include real-world examples and demonstrations to
enhance understanding.

Hands-on Programming Exercises: Providing students with
programming exercises to implement and manipulate data structures
using programming languages. This allows students to gain practical
experience in implementing and working with data structures.

Group Discussions and Peer Learning: Encouraging group discussions
and peer learning activities where students can collaborate, share their
knowledge, and solve problems together. This promotes active learning
and helps reinforce understanding of data structure concepts.

Case Studies and Real-World Applications: Presenting case studies and
real-world examples that demonstrate the practical applications of data
structures. This helps students understand how data structures are used
in various domains, such as software development, networking, and
database management.

Problem-Solving Sessions: Conducting problem-solving sessions where
students are given challenging problems to solve using appropriate data
structures and algorithms. This helps develop their problem-solving
skills and strengthens their understanding of data structure concepts.
Visualizations and Interactive Tools: Utilizing visualizations and
interactive tools, such as animations and simulations, to illustrate the
internal workings of data structures and algorithms. This visual
approach enhances comprehension and helps students grasp complex
concepts more easily.

Assessments and Feedback: Administering regular assessments, such as
quizzes and assignments, to evaluate students' understanding and
progress. Providing timely and constructive feedback on their work
helps them identify areas of improvement and reinforces their learning.
Guest Lectures and Industry Experts: Inviting guest lecturers and
industry experts to share their insights and experiences related to data
structures. This provides students with a broader perspective and
exposes them to real-world applications and challenges.

Online Resources and Self-Study: Recommending online resources,
textbooks, and tutorials for self-study. This allows students to explore
additional materials at their own pace and deepen their understanding of
data structures.

. Project-based Learning: Assigning projects that require students to
design and implement solutions using data structures. This encourages
creativity, problem-solving, and practical application of learned
concepts.

By employing these strategies, students can actively engage with the course
material, develop a solid understanding of data structures, and acquire the
necessary skills to apply them effectively in various contexts.

Delivery Plan (Weekly Syllabus)

Material Covered

Week 1

Introduction to Data Structures and Algorithms

Week 2-3

Stacks and Queues

Week 4-5

Trees and Binary Trees

Week 6

Heaps and Priority Queues

Week 7-8

Graphs

9

Mid-Term Exam

Week 10-
11

Hashing and Hash Tables

Week 12-
13

Advanced Data Structures

Week 14

Advanced Graph Algorithms

Week 15

Review

Delivery Plan (Weekly Lab. Syllabus)
iseall (£ 9l Zlgiall

Material Covered

Introduction to Programming Environment

2. Setting up the programming environment (IDE, compiler, etc.)
3. Writing and executing a simple program in a programming language

Array Manipulation

8. Implementing basic array operations (insertion, deletion, searching)
9. Analyzing the time complexity of array operations

Linked List Implementation

e Implementing a linked list data structure
« Performing operations on a linked list (insertion, deletion, traversal)

Stack and Queue Implementation

8. Implementing a stack using arrays and linked lists
9. Implementing a queue using arrays and linked lists
10. Performing stack and queue operations

Tree Traversals

8. Implementing tree data structures (binary tree, binary search tree)

9. Performing tree traversals (pre-order, in-order, post-order)

Heap Operations

8. Implementing a heap data structure
9. Performing heap operations (insertion, deletion, heapify)

Graph Traversals

Week 7-8 « Implementing a graph data structure (adjacency matrix, adjacency list)
o Performing graph traversals (depth-first search, breadth-first search)

Week 9 Midterm Exam
Hash Table Implementation

Week 10-

1 o Implementing a hash table data structure

« Handling collisions using separate chaining or open addressing

Balanced Binary Search Tree
Week 12-
13 o Implementing a balanced binary search tree (AVL tree, red-black tree)

« Performing operations on the balanced binary search tree (insertion, deletion, search)

Graph Algorithms

« Implementing graph algorithms (Dijkstra's algorithm, Kruskal's algorithm)
e Analyzing the time complexity of graph algorithms

Week 15 Review

Learning and Teaching Resources
wf).lﬂ_g ﬁhﬂ\).\w

Text Available in the Library?

Required Texts Data Structure and Program Design in C++, by Robert Kruse yes

Recommended Data Structure and Algorithm Analysis in C++, by Mark Allen
no
Texts Weiss

Websites

MODULE DESCRIPTION FORM

doul Hall salel) Caa g CJ}.@

Module Information
M\J.ﬂ\ saldl) C'.)\.Aj&’.a

Module Title Object Oriented Programming | Module Delivery

Module Aims, Learning Outcomes and Indicative Contents
Ll Y il sinall g aleil) il g Al jall alall Calaa]

. Advanced OOP Concepts:
Understand and apply advanced object-oriented programming concepts,
such as inheritance, polymorphism, and encapsulation.
Design and implement complex class hierarchies using inheritance and
composition.
Utilize advanced OOP techniques to develop modular and reusable
code.
Design Patterns and Software Architecture:
Explore commonly used design patterns and their application in
software development.
Understand architectural patterns and their role in designing scalable
and maintainable software systems.
Apply design patterns and software architecture principles to solve real-
world problems.
Data Structures and Algorithms:
Understand advanced data structures, such as trees, graphs, and hash
tables, and their implementation in Python.
Analyze algorithmic complexity and choose appropriate algorithms for
different problem-solving scenarios.
Implement and optimize algorithms for searching, sorting, and graph
traversal.
Exception Handling and Error Management:
Master advanced exception handling techniques, such as exception
chaining and custom exception classes.
Understand and apply defensive programming techniques to handle
errors and unexpected situations.
Develop error handling strategies for robust and reliable software.
Concurrency and Parallel Programming:
Understand the challenges and principles of concurrent programming.
Utilize multithreading and multiprocessing to write concurrent Python
programs.
Implement synchronization mechanisms and handle race conditions in
concurrent code.
Testing and Debugging:
Learn advanced techniques for testing Python code, including unit
testing, integration testing, and test-driven development (TDD).
Apply debugging strategies and tools to identify and fix software
defects.
Develop a comprehensive testing and debugging mindset for producing
high-quality code.

Module Objectives
Jand Al alall Calaal

GUI Development and User Experience:

Gain proficiency in developing graphical user interfaces (GUIs) using
Python frameworks such as Tkinter, PyQt, or wxPython.

Understand user experience (UX) principles and design intuitive and
user-friendly interfaces.

Incorporate event-driven programming to handle user interactions in
GUI applications.

Software Development Best Practices:

Learn and apply software development best practices, including code
organization, documentation, and version control.

Collaborate effectively in software development teams using version
control systems like Git.

Understand the importance of code maintainability, scalability, and
reusability.

Module Learning
Outcomes

Aol 5l oLl lasll s jie

. Advanced Understanding of OOP Concepts:

Demonstrate a deep understanding of advanced object-oriented
programming concepts, including inheritance, polymorphism, and
encapsulation.

Apply advanced OOP techniques to design and implement complex
software systems.

Analyze and evaluate different approaches to solve programming
problems using OOP principles.

Design Patterns and Software Architecture:

Apply various design patterns to solve software design problems
effectively.

Design software architectures that are modular, maintainable, and
scalable.

Analyze and evaluate different software architectural patterns for
different types of applications.

Proficiency in Data Structures and Algorithms:

Implement and analyze advanced data structures, such as trees, graphs,
and hash tables, using Python.

Design and optimize algorithms for efficient data manipulation and
problem-solving.

Apply algorithmic thinking and problem-solving skills to solve complex
programming challenges.

Robust Exception Handling and Error Management:

Implement advanced exception handling techniques to handle errors
and exceptional situations in software.

Design error handling strategies to ensure robustness and reliability of
software systems.

Analyze and debug complex software issues related to error
management and exception handling.

Concurrent and Parallel Programming:

Demonstrate an understanding of concurrent programming principles
and techniques.

Utilize multithreading and multiprocessing in Python to write
concurrent and parallel programs.

Implement synchronization mechanisms and handle concurrency-
related issues.

Effective Testing and Debugging:

Apply advanced testing techniques, such as unit testing, integration
testing, and test-driven development (TDD), to ensure software quality.
Use debugging tools and strategies to identify and resolve complex
software defects.

Develop a systematic approach to testing and debugging software
systems.

. Advanced GUI Development and User Experience:

Design and develop sophisticated graphical user interfaces (GUIs) using
Python frameworks such as Tkinter, PyQt, or wxPython.

Apply user experience (UX) principles to create intuitive and user-
friendly interfaces.

Implement event-driven programming to handle user interactions and
enhance user experience.

. Application of Software Development Best Practices:

Apply software development best practices, including code
organization, documentation, and version control, to develop high-
quality software.

Collaborate effectively in software development teams, demonstrating
good teamwork and communication skills.

Demonstrate an understanding of the importance of code
maintainability, scalability, and reusability.

Real-World Application Development:

Design, implement, and test larger-scale software projects using object-
oriented programming principles.

Apply software engineering principles and techniques to manage
project scope, requirements, and timelines.

Demonstrate proficiency in project planning, teamwork, and project
management.

Indicative Contents
Hala LY @l giaal)

. Advanced OOP Concepts:

Inheritance: Advanced inheritance concepts such as multiple
inheritance, method resolution order (MRO), and mixins.
Polymorphism: Advanced polymorphism techniques including method
overriding, abstract base classes (ABCs), and interfaces.

Composition: Utilizing composition over inheritance to design and
implement complex class relationships.

Design Patterns and Software Architecture:

Introduction to design patterns: Understanding and applying common
design patterns such as Singleton, Factory, Observer, and Strategy.
Software architecture principles: Exploring architectural patterns like
Model-View-Controller (MVC) and understanding their application in
software development.

Component-based architecture: Designing and implementing software
using component-based architectural patterns.

Data Structures and Algorithms:

Advanced data structures: Implementation and application of advanced
data structures like balanced search trees, heaps, and graphs.
Algorithm analysis: Analyzing the time and space complexity of
algorithms and choosing the appropriate algorithmic solutions for
different problem domains.

Sorting and searching algorithms: Implementing and analyzing various

sorting and searching algorithms, including quicksort, mergesort, binary
search, and more.

Exception Handling and Error Management:

Advanced exception handling: Handling and propagating exceptions,
exception chaining, and creating custom exception classes.

Defensive programming: Implementing defensive programming
techniques to handle errors and edge cases in software.

Error management strategies: Designing error handling strategies to
ensure fault tolerance and reliability in software systems.

Concurrency and Parallel Programming:

Introduction to concurrency: Understanding the challenges and
principles of concurrent programming.

Threading and multiprocessing: Implementing multithreading and
multiprocessing techniques in Python for concurrent and parallel
programming.

Synchronization and coordination: Utilizing synchronization
mechanisms like locks, semaphores, and condition variables to handle
shared resources and coordinate concurrent tasks.

. Testing and Debugging:

Advanced testing techniques: Implementing unit tests, integration tests,
and test-driven development (TDD) approaches for robust software
testing.

Debugging strategies: Applying advanced debugging techniques and
tools to identify and fix software defects.

Test coverage and code quality: Understanding the importance of code
coverage and maintaining high code quality through testing and
debugging.

GUI Development and User Experience:

GUI frameworks: Exploring advanced GUI frameworks in Python, such
as PyQt, wxPython, or Kivy, for developing interactive graphical user
interfaces.

User experience design: Incorporating user-centered design principles
to create intuitive and visually appealing user interfaces.

Event-driven programming: Utilizing event-driven programming to
handle user interactions and create responsive GUI applications.
Software Development Best Practices:

Code organization and modularity: Applying modular design principles
and organizing code into reusable and maintainable components.
Documentation and commenting: Writing clear and comprehensive
documentation and comments to enhance code readability and
understandability.

Version control: Utilizing version control systems, such as Git, for
collaborative software development and code management.
Real-World Application Development:

Large-scale project development: Working on larger-scale projects that
involve designing, implementing, and testing complex software
systems.

Project planning and management: Understanding project management
methodologies and applying them to effectively plan and manage
software development projects.

Team collaboration: Collaborating with peers in a team environment,

demonstrating effective communication and teamwork skills.

Learning and Teaching Strategies

abeil g alail) il i

Strategies

. Active Learning and Problem-Solving Approach:

Emphasize active learning strategies, such as hands-on coding
exercises, group discussions, and problem-solving activities.
Encourage students to apply their knowledge of OOP principles and
Python programming to real-world scenarios and projects.

Provide opportunities for students to actively engage with the material
through coding challenges, case studies, and practical assignments.
Project-Based Learning:

Implement a project-based approach where students work on larger-
scale programming projects that require the application of advanced
OOP concepts.

Assign projects that involve designing, implementing, and testing
software systems using Python and OOP principles.

Encourage students to collaborate in teams, simulate real-world
development environments, and manage project requirements and
deadlines.

Practical Coding Exercises and Assignments:

Provide a variety of coding exercises and assignments that focus on
advanced OOP topics, design patterns, algorithms, and software
architecture.

Include programming assignments that require students to implement
complex OOP concepts, solve algorithmic problems, and design
efficient data structures.

Provide feedback and guidance on students' code to promote good
programming practices and enhance their understanding of OOP in
Python.

Code Reviews and Peer Collaboration:

Incorporate code review sessions where students review and provide
feedback on each other's code, promoting code quality and best
practices.

Encourage peer collaboration and teamwork, fostering communication
and problem-solving skills in a professional software development
context.

Utilize version control systems (e.g., Git) to facilitate code sharing,
collaboration, and tracking of project development.

Integration of Design Patterns and Software Architecture:

Introduce design patterns and software architecture principles in a
practical context, demonstrating their relevance and benefits in software
development.

Guide students to identify and apply appropriate design patterns and
architectural patterns in their projects.

Discuss case studies and examples of real-world applications where
design patterns and software architecture have been effectively used.
Practical Testing and Debugging Techniques:

Teach advanced testing techniques, such as unit testing, integration
testing, and test-driven development (TDD), to ensure software quality
and reliability.

Emphasize the importance of systematic debugging approaches and the
use of debugging tools to identify and resolve software defects.
Provide practical examples and exercises that require students to write
comprehensive test cases and debug complex code scenarios.

Practical Application of GUI Development:

Provide practical assignments and projects that require students to
develop GUI applications using Python frameworks like Tkinter, PyQt,
or wxPython.

Incorporate user experience (UX) principles and usability testing to
enhance the design and functionality of GUI applications.

Encourage students to incorporate event-driven programming concepts
to handle user interactions and create interactive interfaces.

Exposure to Real-World Software Development Practices:

Introduce students to software development best practices, including
code organization, documentation, and version control.

Familiarize students with collaborative software development tools and
techniques, such as code repositories and issue tracking systems.
Discuss industry trends, emerging technologies, and the importance of
continuous learning in the field of object-oriented programming.

Delivery Plan (Weekly Syllabus)

@bl e pul) Zleidl)

Material Covered

Week 1

Introduction to Object Oriented Programing and Structural Programming

Week 2-3

Introduction to Classes and Objects

Week 4

Encapsulation and Access modifiers

Week 5

Abstraction

Week 6-7

Inheritance

Week 8-9

Polymorphism

Week 10

Mid Term Examination

Week 11

Operator Overloading

Week 12

Operator Overriding

Week 13-15

Project and Presentation

Delivery Plan (Weekly Lab. Syllabus)
D8Rl e gl el

Material Covered

Week 1: Introduction to Object-Oriented Programming and Structural Programming

o Overview of the principles and concepts of object-oriented programming (OOP)
e Introduction to the fundamentals of structural programming
o Discussion on the advantages and characteristics of OOP

Week 2 - 3: Introduction to Classes and Objects

o Understanding the concept of classes and objects in OOP
o Creating and defining classes in C++
e Exploring object instantiation and member functions

Week 4: Encapsulation and Access Modifiers

« Understanding encapsulation and its importance in OOP
o Exploring access modifiers (public, private, protected)
« Discussion on data hiding and encapsulation principles

Week 5: Abstraction

 Introduction to abstraction in OOP
o Understanding abstract classes and interfaces
e Implementing abstraction in C++ using pure virtual functions

Week 6-7: Inheritance

Exploring the concept of inheritance in OOP

Implementing inheritance in C++ through derived classes

Discussing the different types of inheritance (single, multiple, multilevel,
hierarchical)

Week 8-9: Polymorphism

e Understanding polymorphism and its significance in OOP
o Exploring function overloading and overriding
o Implementing polymorphism through virtual functions in C++

Week 10

Week 10: Midterm Examination

o Midterm examination covering topics from weeks 1-9
o Review of previous topics and discussion of any questions or concerns

Week 11

Week 11: Operator Overloading

« Introduction to operator overloading in C++
e Overloading unary and binary operators
o Exploring the use of friend functions for operator overloading

Week 12: Operator Overriding

o Understanding the concept of operator overriding
o Overriding base class operators in derived classes
o Discussion on the limitations and best practices of operator overriding

Week 13-15

Week 13-15: Project and Presentation

e Working on a project that incorporates the principles and concepts covered in the

course
« Planning, designing, and implementing an object-oriented program
» Preparing a presentation to showcase the project and its features

Learning and Teaching Resources
U"‘:’Jﬂb (-JJ\)JLAA

Available in the

Text .
Library?

Required Texts | Lippman (Author), Josée Lajoie (Author), Barbara

C++ Primer (5th Edition) 5th Edition , by Stanley

Moo (Author)

Recommended

Texts

Websites

MODULE DESCRIPTION FORM
duoy I Boledl Cauog 3 god

Module Information
Loy 1 B3l o glas

Module Title Website Design &Programming | Module Delivery

Module Aims, Learning Outcomes and Indicative Contents

Lolin Yl Olgizally platll g5l g Ayl Balell Lol

1. Understanding Web Technologies: To provide students with a
foundational understanding of web technologies, including HTML,
CSS, and JavaScript, and their role in building websites and web
applications.

. Website Structure and Design: To teach students how to create well-
structured and visually appealing websites using HTML and CSS,
focusing on concepts such as layout, typography, color schemes, and
responsive design.

Interactive Web Elements: To enable students to incorporate interactive
elements into websites using JavaScript, such as form validation, event
handling, and dynamic content manipulation.

Module Objectives . Client-Server Communication: To introduce students to the basics of
client-server communication in web development, including sending
and receiving data from a server using HT TP requests and APIs.

. Web Development Tools: To familiarize students with popular web
development tools, such as text editors, version control systems, and
debugging tools, and teach them how to use these tools effectively in
their development workflow.

. Web Accessibility: To emphasize the importance of web accessibility
and teach students how to design and develop websites that are
inclusive and accessible to users with disabilities.

Project Development: To provide students with hands-on experience in
developing a complete web project, from conceptualization to
deployment, while applying the concepts and techniques learned
throughout the course.

Collaboration and Communication: To promote teamwork and effective
communication skills by encouraging students to work collaboratively

Gyl Baladl Colua]

on group projects, communicate project requirements and progress, and
provide constructive feedback to their peers.

Problem-Solving and Debugging: To enhance students' problem-solving
skills and teach them how to debug and troubleshoot common issues in
web development, fostering a systematic and analytical approach to
solving technical problems.

. Professionalism and Ethical Considerations: To instill professional
ethics and good practices in web development, including copyright and
intellectual property considerations, respecting user privacy, and
adhering to industry standards and best practices.

Module Learning
Outcomes

Balall @l ol e
LW

¢ Knowledge of Web Technologies: Gain a solid understanding of web
technologies, including HTML, CSS, and JavaScript, and their role in web
development.

o Website Creation: Design and develop well-structured websites using HTML
and CSS, considering factors such as layout, typography, color schemes, and
responsive design.

¢ Interactive Elements: Implement interactive features on websites using
JavaScript, such as form validation, event handling, and dynamic content
manipulation.

e Client-Server Communication: Understand the basics of client-server
communication in web development, including making HT TP requests and
working with APIs to retrieve and send data.

o Use of Web Development Tools: Utilize popular web development tools,
such as text editors, version control systems, and debugging tools, to enhance
productivity and efficiency in web development projects.

o Web Accessibility: Apply principles of web accessibility to ensure websites
are inclusive and accessible to users with disabilities, following accessibility
guidelines and best practices.

¢ Project Development: Develop a complete web project, applying the
knowledge and skills acquired throughout the course, from planning and design
to implementation and deployment.

e Collaboration and Communication: Collaborate effectively with team
members, communicate project requirements and progress, and provide
constructive feedback to peers in group projects.

¢ Problem-Solving and Debugging: Demonstrate problem-solving skills and
the ability to debug and troubleshoot issues in web development projects, using

a systematic and analytical approach.

o Professionalism and Ethical Considerations: Understand and adhere to
professional ethics and considerations in web development, including
respecting copyright and intellectual property, protecting user privacy, and
following industry standards and best practices

Indicative Contents

dyoliny Yl ©bgisall

The indicative contents for Web Development 1 may include:
1. Introduction to Web Technologies:

Overview of web development concepts and technologies
Understanding the client-server architecture and how the web works

HTML Fundamentals:

HTML syntax and structure
Working with tags, attributes, and elements
Creating hyperlinks, lists, tables, and forms

CSS Basics:

Introduction to Cascading Style Sheets (CSS)
Applying styles to HTML elements

Working with selectors, properties, and values
Managing layout, typography, and colors

JavaScript Fundamentals:

Introduction to JavaScript programming language

Variables, data types, and operators

Conditional statements and loops

Functions and event handling

Responsive Web Design:

Designing websites that adapt to different screen sizes and devices

Using media queries and viewport meta tags

Implementing responsive layouts and navigation menus
. Web Accessibility:

Understanding the importance of web accessibility

Applying accessibility principles and techniques

Testing and optimizing websites for accessibility

Introduction to Server-side Technologies:

Overview of server-side programming languages and frameworks

Introduction to databases and server-side scripting
Basics of server-side development and interacting with databases

Introduction to Version Control:

Understanding the concept of version control and its importance in web
development

Using Git for version control and collaboration

Branching, merging, and resolving conflicts

. Web Project Development:
Planning and organizing a web development project
Creating wireframes and mockups
Implementing the project using HTML, CSS, and JavaScript
. Deployment and Maintenance:
Uploading and hosting a website on a server
Performing maintenance tasks and updates

Testing and troubleshooting common issues

Please note that the above contents are indicative and may vary depending on
the specific curriculum and institution offering the course

Learning and Teaching Strategies

oty easdl bl

Lectures: In-class lectures can be used to introduce and explain key
concepts, programming languages, and techniques related to web
development. The instructor can provide examples and demonstrations
to illustrate the concepts.

Hands-on Practice: Hands-on practice is essential for web development.
Students can engage in practical exercises and coding activities during
the class or in dedicated lab sessions. This allows them to apply the
knowledge gained and practice coding HTML, CSS, and JavaScript.
Strategies . Project-based Learning: Assigning small projects or tasks related to web
development can provide students with real-world scenarios to apply
their skills and knowledge. Working on projects helps them develop
problem-solving abilities, collaboration skills, and practical experience
in building websites.

Group Discussions and Peer Learning: Encouraging group discussions
and peer learning can enhance understanding and knowledge retention.
Students can discuss challenges, exchange ideas, and collaborate on
problem-solving. This fosters a collaborative learning environment and
allows students to learn from each other's experiences.

Online Resources and Tutorials: Providing students with online
resources, tutorials, and documentation can supplement classroom
learning. These resources can include video tutorials, coding exercises,
interactive websites, and documentation of programming languages and
frameworks.

Code Reviews and Feedback: Conducting code reviews and providing
feedback on student projects or assignments can help improve their
coding skills. Feedback can be provided by the instructor or through
peer code reviews. This helps students understand best practices,
identify areas for improvement, and learn from their mistakes.

Guest Speakers and Industry Insights: Inviting guest speakers from the
industry or web development professionals can provide valuable
insights and real-world experiences to students. They can share their
expertise, industry trends, and challenges in web development, inspiring
students and bridging the gap between academia and industry.

. Assessment and Evaluation: Assessments can include quizzes,
assignments, projects, and exams to evaluate students' understanding
and progress. This allows the instructor to gauge their knowledge and
provide constructive feedback for improvement.

Continuous Learning and Updates: Web development is a rapidly
evolving field. It is important to emphasize the need for continuous
learning and staying updated with the latest technologies, frameworks,
and best practices. Encouraging students to explore online resources,
attend workshops, and engage in self-directed learning can help them
keep up with industry trends.

It is worth noting that the selection and implementation of these strategies may
vary based on the specific educational institution, class size, resources
available, and the preferences of the instructor.

Delivery Plan (Weekly Syllabus)

Syl £ g zlgiall

Material Covered

Introduction to Web Development

e Introduction to HTML and its structure
o Creating a basic HTML webpage
e Understanding CSS and styling web pages

Week 2-3

HTML and CSS Fundamentals

« Working with text, links, images, and lists in HTML
e Applying CSS styles to HTML elements

« Introduction to responsive design principles

Week 4-5

Web Design Principles

e Understanding color theory and typography in web design
¢ Creating layouts using CSS positioning and flexbox
¢ Introduction to CSS frameworks like Bootstrap

Multimedia and Forms

e Adding images, videos, and audio to web pages
e Creating forms and handling user input
e Validating form data using HTMLS5 and JavaScript

Week 8-9

. Introduction to JavaScript

e Fundamentals of JavaScript programming
e Working with variables, data types, and operators
o Writing JavaScript functions and control structures

Week 10-
11

JavaScript DOM Manipulation

e Accessing and modifying HTML elements using JavaScript
¢ Handling events and creating interactive web pages
¢ Introduction to JavaScript libraries (e.g., jQuery)

. Introduction to Front-End Frameworks

e Exploring popular front-end frameworks like React or Vue.js
¢ Building dynamic and interactive web pages using frameworks
e Understanding component-based development

Responsive Design and Deployment

Designing responsive websites for different devices and screen sizes
Optimizing web pages for performance
Deploying a website to a web server

Delivery Plan (Weekly Lab. Syllabus)
riseall (£l Zlgiall

Material Covered

. Introduction to HTML

o Creating a basic HTML page
o Adding headings, paragraphs, and lists
« Working with links and images

CSS Styling

e Applying CSS styles to HTML elements
o Creating and styling navigation menus
« Implementing CSS layouts and positioning

Forms and Input Validation

e Creating HTML forms with various input types
¢ Implementing client-side form validation using JavaScript
e Handling form submission and processing user input

Responsive Web Design

« Designing a responsive web layout using CSS media queries
« Adapting the website for different screen sizes and devices
e Testing and optimizing the website for mobile devices

Introduction to JavaScript

10. Writing basic JavaScript code
11. Manipulating the DOM using JavaScript
12. Implementing simple interactive features on a web page

: JavaScript Functions and Events

¢ Defining and calling JavaScript functions
¢ Handling different types of events (e.qg., click, mouseover)
¢ Implementing event handlers and callback functions

Introduction to Bootstrap Framework

e Using Bootstrap CSS classes and components for rapid web development
« Building responsive and mobile-friendly web layouts with Bootstrap
o Customizing and extending Bootstrap components

JavaScript Libraries and Frameworks

o Introduction to popular JavaScript libraries (e.g., jQuery)
o Exploring the features and functionalities of JavaScript frameworks (e.g., Angular,

React)
« Building interactive web applications using libraries and frameworks

Working with APIs and JSON

e Making AJAX requests to retrieve data from external APIs
e Parsing and manipulating JSON data
e Displaying API data on a web page

- Introduction to Server-Side Development

Setting up a local development environment (e.g., Apache, PHP)

Writing server-side scripts using PHP

Implementing basic server-side functionality (e.g., form handling, database
connection)

Web Project Development

Week 11- . .
Applying the concepts learned to develop a complete web project

Planning, designing, and implementing a website or web application
Testing, debugging, and optimizing the web project

14

Project Presentation and Evaluation

Learning and Teaching Resources

wﬁ).&ﬂb {da.’ﬂ\).)l.,a.n

Text Available in the Library?

Required Texts No

Recommended

Texts

Websites

MODULE DESCRIPTION FORM
dawlyl Baledl Cauog Zdged

Module Information
Gyl Bkl loghao

Module Title Network Protocol -1- | Module Delivery

Module Aims, Learning Outcomes and Indicative Contents
oLVl Gbgizally platdl g5l 9 dush)ldl B3kl Glaa]
In this course, Networks department aims to achieve the following objectives:

1. Understand the fundamental concepts and principles of the

TCP/IP protocol suite.
Explain the layered structure of the TCP/IP model and the
functions of each layer.

. ldentify and describe the key protocols and components of the
TCP/IP architecture.
Demonstrate knowledge of network infrastructures, including
different topologies and connecting devices.
Perform IP address calculations using classful and classless
addressing techniques.

. Apply subnetting and supernetting methods to efficiently allocate
IP addresses.

. Understand the process of data delivery and routing in TCP/IP
networks.

. Configure and troubleshoot basic network connectivity using
TCP/IP protocols.

. Analyze network connectivity issues and apply appropriate
solutions.

10. Apply critical thinking and problem-solving skills to address real-

world networking scenarios.

Module Objectives
Gyl 8oLl CBlua]

Module Learning Upon successful completion of this course for the Networks department,
Outcomes students should be able to demonstrate the following learning outcomes:

8oled) pladdl Olryzes 1. Comprehensive Understanding:
Ay ! o Demonstrate a comprehensive understanding of the TCP/IP

protocol suite and its components.
Explain the functions and responsibilities of each layer in the
TCP/IP model.
IP Addressing and Subnetting:
Apply classful and classless addressing techniques for IP address
allocation.
Perform subnetting and supernetting calculations to efficiently
manage network segments.
Network Infrastructure and Connectivity:
|dentify network topologies and understand the role of
connecting devices.
Configure and troubleshoot basic network connectivity using
TCP/IP protocols.
Data Delivery and Routing:
Explain the process of data delivery, including packet
encapsulation, routing, and forwarding.
Analyze and troubleshoot network connectivity issues using
routing protocols.

. Critical Thinking and Problem-Solving:
Apply critical thinking skills to solve real-world networking
scenarios.
Evaluate and select appropriate IP addressing strategies based on
network requirements.

. Communication and Collaboration:

Communicate effectively about TCP/IP concepts and network-
related issues.
Collaborate with peers to solve problems and share knowledge.
Practical Application:
Apply acquired knowledge to design, configure, and troubleshoot
TCP/IP networks.
Implement effective IP addressing schemes and network
segmentation strategies.

8. Lifelong Learning:

e Recognize the importance of continuous learning in the field of

networking.

e Stay updated with new protocols and technologies related to

TCP/IP networking.

Indicative Contents
dolin Y wlgioad|

The indicative contents of this course for the computer department may include
the following topics:

1. Internet Introduction
o History and evolution of the Internet
o Key milestones and developments

Internet architecture and key protocols

Internet governance and organizations
. TCP/IP Protocol Suite Layers

Introduction to the TCP/IP protocol suite

Overview of the TCP/IP layers (Application, Transport, Internet,

Link)

Functions and responsibilities of each layer

Protocols and services associated with each layer

Infrastructure Network and Connecting Devices

Overview of network infrastructures

Network topologies: bus, star, ring, mesh, etc.

Common connecting devices: switches, routers, hubs

Benefits and limitations of different network infrastructures
. Classful Addressing and Special Addressing

Introduction to classful addressing

IP address classes and ranges (Class A, B, C, D, E)

Special IP addresses: loopback, broadcast, multicast

Address exhaustion issues with classful addressing

Subnetting and Supernetting

Introduction to subnetting and its need

Subnet masks and subnet addressing

Calculating subnet addresses and broadcast addresses

Supernetting and route aggregation for efficient addressing
. Classless Addressing

Introduction to classless addressing

Classless Inter-Domain Routing (CIDR)

Variable Length Subnet Masking (VLSM)

Address allocation and route summarization in classless

addressing

Delivery and Routing

Data encapsulation and decapsulation process

Overview of packet delivery and routing

Static routing and dynamic routing protocols (RIP, OSPF)

Routing table configuration and routing decision process

Learning and Teaching Strategies

W‘j ‘o.\:.ﬁ\ QW\JR_«»‘
Learning and teaching strategies for this course for the Network department can
include a combination of the following:

Strategies

46. Lectures: Engage students through informative lectures that cover

theoretical concepts and provide an overview of key topics. Use
multimedia resources, visuals, and real-world examples to enhance
understanding.

. Group Discussions and Collaborative Learning: Encourage group
discussions and collaborative activities to foster interaction and
knowledge sharing among students. Assign group projects or case
studies that require teamwork and problem-solving.

. Online Resources and Multimedia: Utilize online resources, interactive
tutorials, and multimedia materials to supplement learning. This can
include video lectures, online quizzes, virtual labs, and interactive
modules.

. Assignments and Projects: Assign individual and group projects that
require students to apply their knowledge and skills to solve real-world
problems or complete practical tasks. This promotes critical thinking,
problem-solving, and practical application of concepts.

. Assessments and Feedback: Conduct regular assessments, quizzes, and
examinations to evaluate students' understanding of the course material.
Provide timely and constructive feedback to help students identify areas
of improvement.

. Industry Visits and Field Trips: Organize visits to IT companies, data
centers, or relevant organizations to expose students to real-world IT
environments. This provides valuable industry insights and networking
opportunities.

. Online Discussion Forums and Communication Platforms: Establish
online discussion forums or communication platforms where students
can ask questions, share resources, and engage in discussions outside of
the classroom.

These strategies promote active learning, practical application of knowledge,
and engagement with the subject matter. They cater to different learning styles
and encourage students to develop critical thinking, problem-solving, and
communication skills necessary for success in this field.

Delivery Plan (Weekly Syllabus)

Material Covered

Week 1 e Introduction to TCP/IP and the Internet

Week 2 o TCP/IP Protocol Suite Layers

Week 3 e Infrastructure Network and Connecting Devices

Week 4-6 e Classful Addressing and Special Addressing

Week 7-9

Subnetting and Supernetting

Week 10

Mid Term

Week 11-12

Classless Addressing

Week 13-14

Delivery and Routing

Week 15

Review

Week 16

Preparatory week before the final Exam

Learning and Teaching Resources
wf).\ﬂb Plxﬁ\)aba.o

Text

Available in the Library?

Required Texts

TCP/IP PROTOCOL SUITE

Recommended

Texts

Websites

MODULE DESCRIPTION FORM
dawlyl Baledl Cauog Zdged

Module Information
Lyl 33kl o glas

Module Title Microprocessors & Interfacing Module Delivery

Module Aims, Learning Outcomes and Indicative Contents
Loyl Olgizally platll g5l g Ayl Balell Lol
The objectives of the course "Microprocessors and Interfacing” are:

1. Understand microprocessor architecture: Gain a deep understanding of
the internal structure, components, and functioning of microprocessors,
particularly the 8086 family.

Learn assembly language programming: Develop proficiency in
programming microprocessors using assembly language, including data
manipulation, arithmetic operations, and control flow.
Explore interfacing techniques: Acquire knowledge of various
interfacing techniques to connect microprocessors with peripheral
devices, such as memory, 1/O ports, and interrupt controllers.
Develop troubleshooting skills: Learn to identify and resolve common
issues in microprocessor-based systems, including interfacing problems
and software errors.
Module Objectives . Apply memory organization concepts: Understand memory
Lyl B3lodl Blaal organization principles, including addressing modes and memory
hierarchy, to efficiently manage data in microprocessor systems.
Enhance practical skills: Gain hands-on experience through laboratory
experiments, programming microprocessors, designing interfaces, and
implementing projects.
Foster teamwork and communication: Collaborate effectively in team-
based projects, developing communication and teamwork skills
essential for working in the field of microprocessors.
Prepare for advanced studies: Develop a strong foundation in
microprocessor architecture and interfacing, providing a solid base for
further studies or specialization in related areas.
Foster critical thinking: Analyze and evaluate microprocessor systems
and interfaces, identifying areas for improvement and optimization to
enhance performance.

. Understand real-world applications: Gain an understanding of the

applications and impact of microprocessors in various industries,

including embedded systems, robotics, and automation.

By achieving these objectives, students will be well-equipped with the
necessary knowledge and skills to design, program, and interface
microprocessors effectively in a range of applications.

Module Learning
Outcomes

ER{WNUPN L RUIESCS
doly

Upon successful completion of the course "Microprocessors and Interfacing,”
students will be able to:

1. Demonstrate a comprehensive understanding of microprocessor
architecture, including the internal structure, registers, memory
organization, and addressing modes.

Write efficient assembly language programs for microprocessors,
demonstrating proficiency in data manipulation, arithmetic operations,
and control flow.

Design and implement interfaces between microprocessors and
peripheral devices, including memory, 1/O ports, and interrupt
controllers.

Troubleshoot and debug common issues in microprocessor-based
systems, employing problem-solving skills and analytical thinking.
Apply memory organization concepts to effectively manage data in
microprocessor systems, including addressing modes and memory
hierarchy.

Work effectively in a team, collaborating with peers to design and
implement microprocessor-based projects.

Communicate technical concepts and findings clearly and concisely,
both orally and in written reports.

Critically analyze and evaluate microprocessor systems and interfaces,
identifying areas for improvement and optimization.

Demonstrate knowledge of real-world applications of microprocessors,
understanding their impact in various industries.

10. Adapt and apply their knowledge and skills to future technological
advancements in microprocessor systems and interfacing.

These learning outcomes reflect the students' ability to understand, apply, and
analyze the concepts and techniques related to microprocessors and interfacing,
preparing them for further studies or professional careers in the field.

Indicative Contents
dyoliny Yl wbgisall

The indicative contents of the course "Microprocessors and Interfacing” may
include:

1. Introduction to Microprocessors:
o Basics of microprocessors and their applications
o Evolution of microprocessor architecture
o Overview of the 8086 family of microprocessors
2. Microprocessor Architecture and Organization:
o Internal architecture of microprocessors
o Registers and their functions
o Memory organization and addressing modes
3. Assembly Language Programming:
o Introduction to assembly language programming
o Instruction set architecture of the 8086 microprocessor
o Data manipulation, arithmetic operations, and control flow in

assembly language
1/0 Interfacing:
o Input/output interfacing techniques
o Interfacing with memory, 1/O ports, and interrupt controllers
o Handling interrupts and interrupt service routines
Memory Organization:
o Memory hierarchy and cache memory
o Addressing modes and memory segmentation
o Memory mapping and address decoding techniques
Interrupts and Interrupt Handling:
o Types of interrupts and their sources
o Interrupt request (IRQ) handling and priority schemes
o Writing interrupt service routines
Practical Lab Sessions:
o Hands-on experiments to reinforce concepts learned in lectures
o Programming microprocessors using assembly language
o Designing and implementing interfaces with peripheral devices
Troubleshooting and Debugging:
o Techniques for identifying and resolving common issues in
microprocessor systems
o Debugging tools and methodologies for diagnosing problems
. Advanced Topics:
o Introduction to advanced microprocessor architectures and their
features
o Overview of parallel processing and multi-core systems
o Introduction to embedded systems and real-time operating
systems
10. Applications and Case Studies:
o Real-world applications of microprocessors in various industries
o Case studies highlighting the use of microprocessors in different
systems

These indicative contents provide a general overview of the topics covered in
the course, ensuring students gain a comprehensive understanding of
microprocessors, assembly language programming, interfacing techniques, and
practical application of concepts in laboratory sessions.

Learning and Teaching Strategies

edbally @latll ol il

Strategies

The course "Microprocessors and Interfacing” can be taught using a variety of
effective learning and teaching strategies, including:

1. Lectures: Engaging lectures delivered by the instructor to introduce and
explain key concepts, theories, and principles related to
microprocessors and interfacing.

Hands-on Lab Sessions: Practical lab sessions where students can apply
their knowledge and skills by working with microprocessors,
programming in assembly language, and designing and implementing
interfaces with peripheral devices.

Interactive Discussions: Facilitating interactive discussions among
students to encourage active participation and exchange of ideas,
allowing them to deepen their understanding of the course material.
Case Studies: Presenting real-world case studies and examples that
demonstrate the practical applications of microprocessors and
interfacing techniques in various industries, such as robotics,
automation, and embedded systems.
Group Projects: Assigning group projects that require students to
collaborate and apply their knowledge to design and develop
microprocessor-based systems or applications.
Problem-Solving Exercises: Providing problem-solving exercises and
assignments that challenge students to apply their understanding of
microprocessors and interfacing to solve complex problems.
Guest Lectures and Industry Visits: Inviting guest speakers from the
industry or organizing visits to relevant companies or organizations to
expose students to real-world practices and the latest trends in
microprocessors and interfacing.
Online Resources: Utilizing online resources such as interactive
simulations, tutorials, and supplementary materials to enhance
understanding and provide additional learning opportunities outside of
the classroom.
Assessment Methods: Employing a combination of quizzes,
assignments, lab reports, and examinations to assess students'
understanding and mastery of the course material.

. Feedback and Reflection: Providing regular feedback to students on
their progress and performance, as well as encouraging self-reflection to
promote continuous improvement and learning.

These learning and teaching strategies aim to create an engaging and interactive
learning environment that fosters critical thinking, problem-solving skills, and
practical application of microprocessors and interfacing concepts.

Delivery Plan (Weekly Syllabus)
Sl (£ 5l zlginll

Material Covered

Introduction to Microprocessors

e Overview of microprocessors and their applications
« Evolution of microprocessor architecture
e Introduction to the 8086 family of microprocessors

Microprocessor Architecture and Organization

o Internal architecture of microprocessors
o Registers and their functions
e Memory organization and addressing modes

Week 5-7

Assembly Language Programming

e Introduction to assembly language programming
« Instruction set architecture of the 8086 microprocessor
« Data manipulation, arithmetic operations, and control flow in assembly language

Week 8-10

1/0O Interfacing

e Input/output interfacing techniques
e Interfacing with memory, 1/0 ports, and interrupt controllers
o Handling interrupts and writing interrupt service routines

Memory Organization

e Memory hierarchy and cache memory
e Addressing modes and memory segmentation
« Memory mapping and address decoding techniques

Week 13-
14

Advanced Topics

e Introduction to advanced microprocessor architectures and features
o Overview of parallel processing and multi-core systems
e Introduction to embedded systems and real-time operating systems

Review

Delivery Plan (Weekly Lab. Syllabus)

sieall (£ gpd) zlgiall

Material Covered

Introduction to Microprocessors and Assembly Language Programming

e Setting up the development environment (assembler and simulator)
e Writing and executing simple assembly language programs to perform basic
arithmetic operations

I/O Interfacing

10. Interfacing a switch and an LED with the microprocessor
11. Writing assembly language programs to read the switch state and control the LED

Memory Interfacing

e Interfacing a 7-segment display with the microprocessor
o Writing assembly language programs to display numbers and characters on the 7-
segment display

Timer and Counter Applications

11. Using timer and counter modules of the microprocessor
12. Implementing time-based applications such as blinking LEDs or generating sound
tones

Serial Communication

13. Interfacing the microprocessor with a serial communication module
14. Writing assembly language programs to send and receive data through the serial port

Week 6-7

Interrupt Handling

10. Implementing interrupt-driven 1/0 using the microprocessor's interrupt capabilities
11. Writing assembly language programs to handle interrupts from external devices

Graph Traversals

« Implementing a graph data structure (adjacency matrix, adjacency list)
o Performing graph traversals (depth-first search, breadth-first search)

Analog-to-Digital Conversion

« Interfacing an ADC (Analog-to-Digital Converter) with the microprocessor
« Reading analog signals and converting them to digital values using the ADC

Week 10-
11

Digital-to-Analog Conversion

« Interfacing a DAC (Digital-to-Analog Converter) with the microprocessor
o Generating analog signals from digital values using the DAC

Week 12-
13

External Memory Interfacing

e Interfacing external memory modules (e.g., RAM, ROM) with the microprocessor
o Reading from and writing to external memory locations

Week 14-
15

Final Project

Designing and implementing a more complex project that involves multiple
peripherals and real-time operations

Integrating all the concepts learned throughout the course into a complete
microprocessor-based system

Learning and Teaching Resources

oyl il Hobas

Text Available in the Library?

Required Texts

Recommended

Texts

Websites

MODULE DESCRIPTION FORM

duwyl Baledl Cauog Zd 9ol

Module Information
Lyl 83l iloglas

Module Title Software Engineering | Module Delivery

X Theory
Lecture
Lab

Module Type
O Tutorial
O Practical

O Seminar

Module Aims, Learning Outcomes and Indicative Contents

LoliVl Gbgizally pladll g5l 9 duwshyldl 55l LSl

11. Introduction to Software Engineering: Students will gain an understanding of
the fundamental concepts and principles of software engineering. They will
explore the importance of software engineering in developing software

dulyl] Baladl Colual systems.

Module Objectives

. Software Development Life Cycle: Students will learn about the different
phases of the software development life cycle (SDLC), including requirements
gathering, analysis, design, implementation, testing, deployment, and

maintenance.

. Requirements Engineering: Students will study the process of gathering,
analyzing, and documenting software requirements. They will learn
techniques for eliciting requirements, creating use cases, and developing
requirement specifications.

. Software Design: Students will explore software design principles and
methodologies. They will learn to create high-level and low-level designs
using various architectural styles and design patterns.

. Software Implementation: Students will learn about programming practices,
coding standards, and software development tools. They will gain hands-on
experience in implementing software solutions using programming languages
and development frameworks.

. Software Testing and Quality Assurance: Students will understand the
importance of software testing in ensuring software quality. They will learn
different testing techniques, such as unit testing, integration testing, system
testing, and acceptance testing..

. Software Maintenance and Evolution: Students will study the challenges and
techniques involved in software maintenance and evolution.

. Software Project Management: Students will be introduced to project
management principles and practices specific to software development
projects. They will learn about project planning, scheduling, estimation, risk
management, and team collaboration.

. Software Configuration Management: Students will understand the
importance of configuration management in software development. They will
learn about version control systems, change management, and release
management.

. Software Engineering Ethics and Professionalism: Students will explore
ethical issues and responsibilities in software engineering. They will learn
about professional codes of conduct, intellectual property rights, and privacy
concerns.

Throughout the course, students will engage in practical assignments, group
projects, and case studies to apply the software engineering concepts and
methodologies learned in real-world scenarios.

Module Learning
Outcomes

The course prepares students for careers in software development, software
project management, and related fields, providing them with the knowledge
alal) plasdl Wlryee and skills to contribute effectively to software development teams and deliver
dnly ! high-quality software products.

L The following are indicative contents that may be covered in the course:
Indicative Contents

1- Introduction to Software Engineering

LoVl ©lgizall Software Requirements Engineering

Software Design and Architecture

Software Testing and Quality Assurance
Software Maintenance and Evolution
Software Verification and Validation

Software Engineering Tools and Environments
Software Documentation and Communication
Software Ethics and Professionalism

Learning and Teaching Strategies

oy @l bl

Learning and teaching strategies for the IT basics course for the Network
department can include a combination of the following:

53. Lectures: Engage students through informative lectures that cover
theoretical concepts and provide an overview of key topics. Use
multimedia resources, visuals, and real-world examples to enhance
understanding.

. Hands-on Labs: Provide practical lab sessions where students can apply
their knowledge and skills acquired in lectures. These labs can involve
hardware assembly, software installation, network configuration,
programming exercises, and troubleshooting.

. Group Discussions and Collaborative Learning: Encourage group
discussions and collaborative activities to foster interaction and
knowledge sharing among students. Assign group projects or case
studies that require teamwork and problem-solving.

Strategies . Demonstrations and Simulations: Use demonstrations and simulations
to showcase complex concepts or processes. This can include network
simulations, software simulations, or virtual environments to reinforce
understanding and practical application.

. Guest Speakers and Industry Experts: Invite guest speakers from the
industry to share their experiences, insights, and the latest trends in the
IT field. This can provide students with a real-world perspective and
inspire them to explore various career paths.

. Online Resources and Multimedia: Utilize online resources, interactive
tutorials, and multimedia materials to supplement learning. This can
include video lectures, online quizzes, virtual labs, and interactive
modules.

. Assignments and Projects: Assign individual and group projects that
require students to apply their knowledge and skills to solve real-world
problems or complete practical tasks. This promotes critical thinking,
problem-solving, and practical application of concepts.

. Assessments and Feedback: Conduct regular assessments, quizzes, and

examinations to evaluate students' understanding of the course material.
Provide timely and constructive feedback to help students identify areas
of improvement.

. Industry Visits and Field Trips: Organize visits to IT companies, data
centers, or relevant organizations to expose students to real-world IT
environments. This provides valuable industry insights and networking
opportunities.

. Online Discussion Forums and Communication Platforms: Establish
online discussion forums or communication platforms where students
can ask questions, share resources, and engage in discussions outside of
the classroom.

Delivery Plan (Weekly Syllabus)

Sl (£ gl Zlgholl

Material Covered

Introduction
- Software definition
- Applications and problems

- Software engineering definition.

Software Process
- The conflicting and complementary goals of SWE

- Water fall Mode

Software Engineering Paradigms
- Prototyping
- Evolutionary development

- Formal systems development

Software Requirement
- Objectives
Requirements Engineering Process
Types of Requirements
Software Requirement Specification

Software Requirement Validation

Analysis Model

- Analysis Model Types and examples

- Formal Specifications
- Formal methods

- Formal Specification Languages

Week 6-7

Software Design
- Design and Quality
- Software Design Levels

- Fundamental Design Concepts

Functional Independence
- Definition
Cohesion and its types
Coupling and its types

- Effective Modular Design

Week 9-10

Design Element
- Data
Architectural and procedural design
Top-Down and Bottom-Up Design
Structured Design

Transform and Transaction Mapping

Software Testing
- Definition and Objectives
Exhaustive Testing
Test case design

Software Testing Strategies

Week 12

White Box Testing

- Basis path testing

Basis path method with examples
Condition testing
Data flow testing

- Loop testing

Black Box Testing

- Black box testing techniques

Software Management
Week 14

- Software Project definition and goal

Project Scheduling

- Resource management
Week 15
- Project Execution & Monitoring

- Project Management Tools

Learning and Teaching Resources
u.u;)_)w‘j PJ:.‘U\).)L,M

Text Available in the Library?

The textbooks cover the fundamental concepts, principles,

. and practices of Software Engineering. Some popular options
Required Texts

include " Software engineering A practitioner’s approach,
Third Edition, Roger S. Pressman, 2005.

Recommended

Texts

Websites

MODULE DESCRIPTION FORM

Ayl Bolal Loy 73 ge

Module Information

&yl 8oladl Ologlas
Module Title Routing and Switching Module Delivery

Module Aims, Learning Outcomes and Indicative Contents
oLVl Gbgizally platdl g5l 9 duwhyldl B3l)l laa]

In this course, Networks department aims to achieve the following objectives:

Module Objectives
Gyl Boladl CBlua]

1. Gain a fundamental understanding of networking concepts,

including switches, routers, VLANs, and inter-VLAN routing.
Develop practical skills in configuring basic settings on switches
and routers.

. Understand and configure Spanning Tree Protocol (STP) for loop
prevention in switched networks.
Learn about EtherChannel and link aggregation techniques for
bundling multiple links.

. Acquire knowledge of DHCP and DHCP relay agent configuration
for dynamic IP address assignment.

. Learn switch security mechanisms, including port security and
VLAN security.

. Understand the basics of OSPF (Open Shortest Path First) and
configure OSPF in single and multiple areas.

. Gain familiarity with firewalls and learn to configure basic firewall
rules.
Learn about Access Control Lists (ACLs) and Network Address
Translation (NAT) concepts and configuration.

10. Gain knowledge of WAN concepts, including different WAN
technologies and protocols.
11. Review and reinforce the concepts covered throughout the

course.

Module Learning
Outcomes

8ol edadl Ol y3ee
Ayl

Upon successful completion of this course for the Networks department,
students should be able to demonstrate the following learning outcomes:

1. Understanding of Networking Fundamentals: Students will
demonstrate a solid understanding of networking concepts,
including switches, routers, VLANSs, inter-VLAN routing, and basic
network protocols.

. Configuration and Troubleshooting Skills: Students will develop
practical skills in configuring switches and routers, implementing
Spanning Tree Protocol (STP), configuring EtherChannel and link
aggregation, DHCP, OSPF, firewalls, ACLs, NAT, and
troubleshooting network connectivity and performance issues.

. Security Knowledge: Students will gain knowledge of switch
security mechanisms, such as port security and VLAN security, as
well as basic firewall configuration.

Proficiency in OSPF: Students will demonstrate proficiency in
configuring OSPF in single and multiple areas, understanding
OSPF network types, authentication, and OSPFv3.

Familiarity with WAN Technologies: Students will gain familiarity
with different WAN technologies, such as leased lines, MPLS,
VPN, and WAN protocols like PPP and HDLC.

. Understanding of Network Services: Students will learn about
important network services, including DHCP and DNS.

7. Application of Access Control Lists (ACLs) and Network Address
Translation (NAT): Students will be able to configure ACLs for
traffic filtering and implement NAT for IP address translation.

. Troubleshooting Skills: Students will develop effective
troubleshooting methodologies and techniques to identify and
resolve network issues.

Exam Readiness: Students will be prepared to take the CCNA
Routing & Switching exam and demonstrate their knowledge and
skills in the field of network routing and switching.

Overall Competence in Networking: By the end of the course, students will
have a comprehensive understanding of network routing and switching
concepts, configurations, and troubleshooting, enabling them to pursue
further studies or careers in network administration and engineering.

Indicative Contents
dooliyY ©bgiseal

The indicative contents of this course for the Networks department may include
the following topics:

This course covers the in-depth understanding of various networking concepts
and technologies. The course begins with an introduction to networking
concepts and an overview of switches and routers, followed by basic
configuration concepts for switches and routers.

The course then covers Virtual LAN (VLAN) concepts and how to create and
configure VLANS on switches. It also covers inter-VLAN routing, VLAN
trunking protocols (VTP), and VLAN connectivity.

The course then goes into Spanning Tree Protocol (STP) concepts and
operation, including configuring and troubleshooting STP, as well as STP
enhancements (RSTP, MSTP), root bridge election, and port roles.

It then covers link aggregation concepts, including configuring and testing
EtherChannel, as well as Dynamic Host Configuration Protocol (DHCP) and
DHCP Relay Agent configuration.

The course also covers switch security mechanisms, including port security,
VLAN security, and securing switch management. It discusses Open Shortest
Path First (OSPF) basics and operation in a single area, OSPF areas and
network types, and OSPF authentication and OSPFva3.

The course then moves onto firewalls, including an introduction to firewalls
and their types, as well as firewall architectures and basic configuration. It also
covers Access Control Lists (ACLs) concepts and configuration, as well as
Network Address Translation (NAT) concepts and configuration.

Learning and Teaching Strategies

ekaddly @ladl Oled) Aol
Learning and teaching strategies for the IT basics course for the Network
department can include a combination of the following:

63. Lectures: Engage students through informative lectures that cover
theoretical concepts and provide an overview of key topics. Use
multimedia resources, visuals, and real-world examples to enhance
understanding.

. Hands-on Labs: Provide practical lab sessions where students can apply
their knowledge and skills acquired in lectures. These labs can involve
hardware assembly, software installation, network configuration,
programming exercises, and troubleshooting.

. Group Discussions and Collaborative Learning: Encourage group
discussions and collaborative activities to foster interaction and
knowledge sharing among students. Assign group projects or case
studies that require teamwork and problem-solving.

. Demonstrations and Simulations: Use demonstrations and simulations
to showcase complex concepts or processes. This can include network
simulations, software simulations, or virtual environments to reinforce
understanding and practical application.

. Guest Speakers and Industry Experts: Invite guest speakers from the
industry to share their experiences, insights, and the latest trends in the
IT field. This can provide students with a real-world perspective and
inspire them to explore various career paths.

Strategies . Online Resources and Multimedia: Utilize online resources, interactive
tutorials, and multimedia materials to supplement learning. This can
include video lectures, online quizzes, virtual labs, and interactive
modules.

69. Assignments and Projects: Assign individual and group projects that
require students to apply their knowledge and skills to solve real-world
problems or complete practical tasks. This promotes critical thinking,
problem-solving, and practical application of concepts.

70. Assessments and Feedback: Conduct regular assessments, quizzes, and
examinations to evaluate students' understanding of the course material.
Provide timely and constructive feedback to help students identify areas
of improvement.

. Industry Visits and Field Trips: Organize visits to IT companies, data
centers, or relevant organizations to expose students to real-world IT
environments. This provides valuable industry insights and networking
opportunities.

. Online Discussion Forums and Communication Platforms: Establish
online discussion forums or communication platforms where students
can ask questions, share resources, and engage in discussions outside of
the classroom.

These strategies promote active learning, practical application of knowledge,
and engagement with the subject matter. They cater to different learning styles
and encourage students to develop critical thinking, problem-solving, and

communication skills necessary for success in the IT field.

Delivery Plan (Weekly Syllabus)

Syl £ g zlgiall

Material Covered

Week 1 e Switch Basic Configuration

Week 2 Router Basic Configuration

Week 3-4 VLAN Configuration

Week 5 Connecting VLANs

Week 6 Spanning Tree Protocol (STP) Part 1

Week 7 DHCP and DHCP Relay Agent

Week 8 DHCP IPv6

Week 9 Mid Term

Week 10 Switch Security 1

Week11 Switch Security 2

Week 12 Single Area OSPF

Week 13 OSPF Part 2

Week 14 WAN Concepts

Week 15 Review

Week 16 Preparatory week before the final Exam

Delivery Plan (Weekly Lab. Syllabus)
sl ijé—“)" a2y

Material Covered

4. Lab: Configuring basic settings on a switch and routers, such as hostname,
passwords, IP addresses, and interface descriptions. Verify connectivity

between devices.
O

Week 3-4

12. Creating and configuring VLANs on switches, configuring VLAN trunking,
implementing VLAN tagging.

o

Week 5-6

Lab: Configuring STP, troubleshooting common STP issues.

Week 7-8

DHCP and DHCP Relay Agent

Week 9

Mid Term

Week 10-11

Switch Security

Week 12

Single Area OSPF

Week 13

OSPF Part 2

Week 14

ACL and NAT

Week 15

Review

Learning and Teaching Resources
oy el Hobas

Text Available in the Library?

Required Texts

TCP/IP PROTOCOL SUITE

Recommended

Texts

Websites

MODULE DESCRIPTION FORM

duwyl Baledl Cauog Zdged

Module Information

Aoyl Boladl iloglra

Module Title

Visual Programming Module Delivery

Module Aims, Learning Outcomes and Indicative Contents
Loyl Olgizally platll g5l g Ayl Balell LBl

Module Objectives
gyl Baledl Calua

The Visual programming course for the Networks department aims to
achieve the following objectives:

.Understanding Visual Programming Concepts: Gain a solid

understanding of the fundamental concepts and principles of visual
programming, including visual representations, event-driven
programming, and graphical user interfaces (GUIs).

. Proficiency in Visual Programming Tools: Develop proficiency in using

3.

popular visual programming tools and environments such as Scratch,
Blockly, or visual programming languages like Visual Basic, Python
with Tkinter, or App Inventor.

GUI Design and Development: Learn to design and develop user-
friendly graphical user interfaces (GUIs) using visual programming
tools, including layout design, component placement, and interactive
elements.

. Event-Driven Programming: Understand the concepts of event-driven

programming and learn how to create event handlers and respond to
user input and system events in visual programming environments.

5. Algorithmic Thinking and Problem Solving: Enhance algorithmic

thinking and problem-solving skills by developing logical and
computational thinking through visual programming challenges and
projects.

. Integration of Multimedia and Sensors: Explore the integration of

multimedia elements such as images, audio, and video, as well as
sensor inputs like motion, sound, and touch, into visual programming
projects.

7. Collaboration and Teamwork: Foster collaboration and teamwork skills

through group projects that involve designing, developing, and
presenting visual programming applications.

. Debugging and Troubleshooting: Develop the ability to identify and

resolve errors and bugs in visual programming code through effective
debugging and troubleshooting techniques.

9. Creativity and Innovation: Encourage creativity and innovation by

10

11.

allowing students to explore and create interactive and visually
appealing applications using visual programming tools.
. Ethical and Responsible Use of Visual Programming: Promote ethical
and responsible use of visual programming by emphasizing issues
such as privacy, security, intellectual property, and social impact.
Project Management and Documentation: Gain experience in project
management by planning, organizing, and documenting visual
programming projects, including requirements gathering, design,
implementation, testing, and documentation.
. Continuous Learning and Adaptation: Develop a mindset of
continuous learning and adaptation to keep up with emerging trends
and advancements in visual programming and related technologies.

Module Learning
Outcomes

Upon successful completion of the Visual programming course for the

Networ

ks department, students should be able to demonstrate the following

RPN ESURUIESE
Aoy

learning outcomes:

3.

Proficiency in Visual Programming Tools: Students should be able to
effectively use visual programming tools and environments to create
functional and visually appealing applications with user-friendly
interfaces.

GUI Design and Development: Students should be capable of designing
and developing graphical user interfaces (GUIs) using visual
programming techniques, including layout design, component
placement, and interactive features.

Event-Driven Programming: Students should understand the concepts
of event-driven programming and be able to create event handlers and
respond to user input and system events in visual programming
environments.

. Algorithmic Thinking and Problem Solving: Students should

demonstrate the ability to apply algorithmic thinking and problem-
solving skills to develop logical and computational solutions to
programming challenges within the visual programming paradigm.
Integration of Multimedia and Sensors: Students should be able to
integrate multimedia elements, such as images, audio, and video, as
well as sensor inputs like motion, sound, and touch, into their visual
programming projects.

Collaboration and Teamwork: Students should have experience working
collaboratively in teams to design, develop, and present visual
programming applications, demonstrating effective communication,
cooperation, and shared responsibility.

Debugging and Troubleshooting: Students should possess the skills to
identify and resolve errors and bugs in visual programming code
through effective debugging and troubleshooting techniques.

. Creativity and Innovation: Students should showcase creativity and

innovation by creating unique and interactive applications that go
beyond basic requirements, incorporating novel ideas, design elements,
or features.

. Ethical and Responsible Use of Visual Programming: Students should

exhibit an understanding of ethical considerations related to visual
programming, including privacy, security, intellectual property, and the
social impact of their applications.

. Project Management and Documentation: Students should demonstrate

the ability to plan, organize, and document visual programming
projects, including requirements gathering, design documentation, code
commenting, and user instructions.

. Continuous Learning and Adaptation: Students should exhibit a mindset

of continuous learning and adaptation, being aware of emerging trends
and advancements in visual programming and related technologies and
being capable of independently learning and exploring new tools and
concepts.

Indicative Contents
dooliyYl ©bgisal

The indicative contents of the Visual programming course for the computer
department may include the following topics:

55. Introduction to Visual Programming

o Overview of visual programming concepts and benefits
o Introduction to visual programming tools and environments
o Basic elements and features of visual programming interfaces
. GUI Design and Layout
o Principles of graphical user interface (GUI) design
o Layout managers and component placement
o Styling and customization of GUI elements
. Event-Driven Programming
o Introduction to event-driven programming paradigm
o Handling user input events (e.g., button clicks, mouse
movements)
o Responding to system events (e.g., window events, timer events)
. Data Manipulation and Visualization
o Working with data structures and variables in visual
programming
o Displaying data using charts, graphs, and other visualization
techniques
o Interacting with data through input forms and user controls
. Multimedia Integration
o Incorporating images, audio, video, and animations into visual
programming projects
o Manipulating multimedia elements using visual programming
tools
o Creating interactive multimedia applications
. Animation and Game Development
o Introduction to animation concepts in visual programming
o Creating animations and transitions
o Developing simple games using visual programming techniques
. Database Integration
o Connecting visual programming applications to databases
o Retrieving and manipulating data from a database using visual
programming tools
o Creating interactive forms for data entry and retrieval
. Web and Mobile Application Development
o Introduction to web and mobile application development using
visual programming
Creating web pages or mobile app interfaces with visual
programming tools
o Integrating web services or mobile device features into visual
programming applications
. Advanced Visual Programming Concepts
o Advanced GUI design techniques (e.g., drag-and-drop, custom
controls)
o Multi-threading and concurrency in visual programming
o Extending visual programming functionality with plugins or
extensions
. Project Development
o Planning, designing, and implementing a visual programming
project
o Applying learned concepts and techniques to develop a
substantial application

o Iterative development, testing, and debugging of the project
65. User Experience (UX) Design and Usability
o Introduction to UX design principles and usability
considerations
o Conducting user testing and incorporating user feedback into
visual programming projects
o Enhancing the user experience through effective design choices
66. Deployment and Distribution
o Packaging and distributing visual programming applications for
different platforms
Considerations for deployment on web, desktop, or mobile
platforms
App store guidelines and submission processes

Learning and Teaching Strategies

sl)l bl el

Learning and teaching strategies for the Visual programming course for the

1. Hands-on Projects: Encourage students to actively engage in hands-on
projects throughout the course. Assign programming tasks and projects
that allow students to apply the visual programming concepts they have
learned. Provide them with real-world scenarios and challenges to solve
using visual programming tools.

Interactive Demos and Examples: Use interactive demos and examples
to demonstrate the application of visual programming concepts. Show
step-by-step development of applications, highlighting key features and
techniques. Encourage students to experiment with the provided
examples and modify them to gain a deeper understanding.

Collaborative Learning: Promote collaborative learning by assigning
group projects or pairing students for programming tasks. Encourage
students to discuss and share ideas, troubleshoot issues together, and

Strategies provide feedback to their peers. This fosters teamwork and enhances

problem-solving skills through collective effort.

Practice and Experimentation: Assign regular coding exercises and

practice sessions to reinforce learning. Provide a variety of problems

and challenges to tackle, allowing students to practice different aspects
of visual programming. Encourage experimentation and creativity by
giving them the freedom to explore different approaches and solutions.

Code Review and Feedback: Incorporate code review sessions where

students can present their projects and receive feedback from the

instructor and their peers. Provide constructive criticism to help
students improve their coding style, design choices, and adherence to
best practices in visual programming.

Online Resources and Tutorials: Share supplementary online resources,

tutorials, and documentation related to visual programming tools and

concepts. Point students to helpful websites, forums, and video tutorials
where they can find additional learning materials and examples to

deepen their understanding.

Mini-Projects and Challenges: Introduce mini-projects and coding
challenges that require students to think creatively and solve specific
problems using visual programming. These smaller-scale projects allow
students to focus on specific skills or concepts and provide
opportunities for self-assessment and self-improvement.

Reflective Learning: Encourage students to reflect on their learning
progress and experiences. Assign periodic reflection papers or journal
entries where they can express their thoughts, challenges faced, and
lessons learned while working on visual programming projects. This
promotes metacognition and helps students identify areas of
improvement.

Guest Speakers and Industry Insights: Invite guest speakers from the
industry who have expertise in visual programming or have utilized
visual programming tools in their work. They can share real-world
applications and insights, providing students with a broader perspective
on the relevance and practical applications of visual programming.

. Documentation and Documentation Review: Emphasize the importance
of documenting code and maintaining clear, well-structured project
documentation. Teach students how to write effective comments,
documentation, and README files. Conduct documentation review
sessions to assess their ability to communicate their code and project
effectively.

Delivery Plan (Weekly Syllabus)

Material Covered

Week 1: Introduction to Visual Programming

e Overview of visual programming concepts and tools
o Getting familiar with the visual programming environment

Week 2: GUI Design and Layout

o Exploring layout managers and component placement
o Creating simple user interfaces

Week 3: Event-Driven Programming

« Understanding event-driven programming paradigm
« Handling user input events and system events

Week 4: Data Manipulation and Visualization

« Working with data structures and variables in visual programming

« Displaying data using charts, graphs, or other visualization techniques

Week 5: Multimedia Integration

e Incorporating images, audio, video, and animations into projects
e Manipulating multimedia elements using visual programming tools

Week 6: Animation and Game Development

o Creating animations and transitions
o Developing simple games using visual programming techniques

Week 7: Database Integration

« Connecting visual programming applications to databases
« Retrieving and manipulating data using visual programming tools

Week 8: Web and Mobile Application Development

« Introduction to web and mobile app development with visual programming
« Creating web pages or mobile app interfaces

Week 9: Advanced Visual Programming Concepts

o Exploring advanced GUI design techniques
o Multithreading and concurrency in visual programming

Week 10: Project Development (Part 1)

e Planning and designing a visual programming project
o Implementing core features of the project

Week 11: Project Development (Part 2)

« Continuing project implementation
e Testing and debugging the project

Week 12

Week 12: User Experience (UX) Design and Usability

e Introduction to UX design principles and usability considerations
o Enhancing the user experience of visual programming projects

Week 13

Week 13: Deployment and Distribution

« Packaging and distributing visual programming applications
o Considerations for deploying on different platforms

Week 14: Project Refinement and Review

« Finalizing project implementation

e Conducting code review and project review sessions

Week 15

Week 15: Final Project Presentation and Evaluation

e Presenting visual programming projects to the class
« Evaluation and feedback on the projects

Week 16

Preparatory week before the final Exam

Delivery Plan (Weekly Lab. Syllabus)

Material Covered

Lab 1: Introduction to Visual Programming Tools

o Familiarization with the visual programming environment

o Exploring the basic features and functionalities of the chosen visual
programming tool

o Creating a simple "Hello World" application

Lab 2: GUI Design and Layout

o Applying layout managers to create a responsive user interface
o Adding components and arranging them within the interface
Customizing the appearance and styling of GUI elements

Lab 3: Event-Driven Programming

Implementing event handlers for user interactions (e.g., button clicks, mouse
events)
Responding to system events (e.g., window events, timer events)

o Creating interactive applications with event-driven programming

Lab 4: Data Manipulation and Visualization

o Working with data structures (e.g., arrays, lists) in visual programming
o Displaying data using charts, graphs, or other visualization techniques
o Creating interactive data-driven applications

Lab 5: Multimedia Integration

o Incorporating multimedia elements (e.g., images, audio, video) into projects
Manipulating multimedia assets using visual programming tools

o Developing interactive multimedia applications

Lab 6: Animation and Game Development

o Creating animations and transitions using visual programming tools
o Developing a simple game using visual programming techniques
o Implementing game mechanics and user interactions

Lab 7: Project Development and Review

Applying learned concepts to develop a small-scale visual programming
project

Testing and debugging the project

Presenting the project and receiving feedback from peers and the instructor

Learning and Teaching Resources
wf).&ﬂb P.La.’i)\).)l.,a.n

Text Available in the Library?

Required Texts

Microsoft Visual C# Step by Step, 10th Edition, By John Sharp
Microsoft Press, 2022

Recommended

Texts

Websites

MODULE DESCRIPTION FORM

Gy 1 B3l Lo g 3 g0

Module Information

Ayl 3Ll olaglas

Module Title

Website design and programming 2 | Module Delivery

Module Aims, Learning Outcomes and Indicative Contents
LalinYl Olgisally platll g5l g Ayl Balell LSl

The course objectives for Web Development 2 may include:

1. Advanced Web Technologies: Introduce students to advanced web
technologies and frameworks, such as server-side scripting languages
(e.g., PHP, Python), content management systems (e.g., WordPress),
and client-side frameworks (e.g., React, Angular).

Database Integration: Teach students how to integrate databases into
web applications, including database design, querying, and data
manipulation using SQL. Focus on concepts such as data modeling,
normalization, and database connectivity.

Dynamic Web Development: Enable students to build dynamic web
applications by integrating server-side scripting languages with client-
side technologies. Cover topics like session management, form
handling, user authentication, and data validation.

. Web Security: Raise awareness about common web security
vulnerabilities and techniques to secure web applications. Teach
students about secure coding practices, input validation, authentication
mechanisms, and protection against common attacks like cross-site
scripting (XSS) and SQL injection.

. Web Performance Optimization: Explore techniques to improve the
performance and efficiency of web applications. Cover topics like
caching, code minification, image optimization, and front-end
optimization techniques to enhance the user experience.

Module Objectives . Responsive Web Design: Introduce students to the principles of

Gyl BoLal lua] responsive web design and teach them how to create websites that adapt
and display well on different devices and screen sizes. Cover CSS
frameworks, media queries, and techniques for creating responsive
layouts.

. Web Accessibility: Emphasize the importance of creating web
applications that are accessible to users with disabilities. Teach students
about accessibility standards, techniques for implementing accessible
features, and the use of assistive technologies.

Project Development: Provide opportunities for students to work on
larger-scale web development projects. Encourage collaborative project
work, where students can apply their knowledge and skills to build real-
world web applications.

Industry Practices and Emerging Trends: Keep students updated with
current industry practices and emerging trends in web development.
Introduce them to topics like progressive web apps, single-page
applications, API integrations, and the use of modern tools and
frameworks.

. Professional Development: Foster professional skills by promoting

effective communication, teamwork, project management, and problem-
solving abilities within the context of web development projects.

These objectives aim to equip students with the necessary knowledge, skills,
and techniques to become proficient web developers capable of building
dynamic and secure web applications using the latest technologies and industry
best practices.

Module Learning The learning outcomes for Web Development 2 may include:
Outcomes

. Advanced Web Technologies: Demonstrate proficiency in using

Balal) elatll olryee advanced web technologies and frameworks, such as server-side
scripting languages, content management systems, and client-side
frameworks, to develop robust and scalable web applications.

Database Integration: Apply database integration techniques to create
dynamic web applications, including database design, querying, and
data manipulation. Develop skills in working with databases and
understanding the importance of efficient data management.

Dynamic Web Development: Build dynamic web applications by
integrating server-side scripting languages with client-side technologies.
Implement features like session management, form handling, user
authentication, and data validation to create interactive and responsive
web experiences.

. Web Security: Identify and mitigate common web security
vulnerabilities. Implement secure coding practices, employ
authentication mechanisms, and protect against common attacks like
cross-site scripting (XSS) and SQL injection to ensure the security of
web applications.

. Web Performance Optimization: Optimize the performance of web
applications by implementing techniques such as caching, code
minification, and front-end optimization. Improve website loading
speed and user experience through efficient resource management.
Responsive Web Design: Create responsive web designs that adapt to
different devices and screen sizes. Develop skills in using CSS
frameworks, media queries, and responsive layout techniques to ensure
consistent and visually appealing experiences across multiple platforms.

. Web Accessibility: Design and develop web applications that are
accessible to users with disabilities. Apply accessibility standards and
techniques to ensure equal access and usability for all users, considering
factors such as screen readers, keyboard navigation, and alternative text
for images.

Project Development: Collaborate with a team to plan, design, and
implement larger-scale web development projects. Apply project
management principles, communicate effectively, and work
collaboratively to deliver high-quality web applications.

Industry Practices and Emerging Trends: Stay informed about current
industry practices and emerging trends in web development.
Demonstrate awareness of technologies, tools, and frameworks used in
the industry, and adapt to changing demands and advancements in the
field.

. Professional Growth: Demonstrate professionalism in web development
by effectively communicating ideas, solving problems, and adapting to
new challenges. Continuously improve skills and stay updated with
industry advancements through self-directed learning and professional
development opportunities.

Laly !

These learning outcomes aim to equip students with the knowledge, skills, and
abilities to become proficient web developers who can create dynamic, secure,
and user-friendly web applications using advanced technologies and industry
best practices.

Indicative Contents
doolinyYl ©bgisall

The indicative contents for Web Development 2 may include:

1.

Introduction to Server-Side Scripting: Overview of server-side scripting
languages such as PHP, Python, or Node.js. Understanding the server-
side architecture and the role of server-side languages in web
development.

Database Integration: Exploring advanced database integration
techniques using SQL or NoSQL databases. Topics may include
database design, advanced querying, data manipulation, and database
security.

Content Management Systems (CMS): Introduction to popular CMS
platforms like WordPress, Drupal, or Joomla. Understanding the
architecture, theme development, plugin customization, and content
management using CMS.

. Web Frameworks: Introduction to popular web frameworks such as

Ruby on Rails, Django, or Laravel. Exploring the features, MVC
architecture, routing, database integration, and rapid development using
web frameworks.

RESTful API Development: Understanding the concepts of RESTful
APIs and their role in web development. Building and consuming
RESTTful APIs using popular frameworks or libraries like Express.js or
Flask.

. Authentication and Authorization: Implementing user authentication

and authorization mechanisms in web applications. Topics may include
user registration, login/logout functionality, password hashing, and role-
based access control.

. Web Security Best Practices: Exploring advanced web security

concepts and best practices. Topics may include handling user input
securely, preventing common vulnerabilities like CSRF and XSS
attacks, and implementing secure coding practices.

. Web Performance Optimization: Techniques for optimizing the

performance of web applications. Topics may include caching,
asynchronous loading, minification, image optimization, and front-end
performance best practices.

Responsive Web Design: Advanced concepts in responsive web design.
Exploring responsive frameworks, media queries, responsive images,
and techniques for creating mobile-friendly and adaptive web layouts.

. Testing and Debugging: Strategies for testing and debugging web

applications. Topics may include unit testing, integration testing,
browser debugging tools, and error handling techniques.

. Version Control and Collaboration: Introduction to version control

systems like Git and their role in collaborative web development.
Understanding branching, merging, resolving conflicts, and
collaborative development workflows.

. Project Development: Working on a larger-scale web development

project in a team environment. Applying project management
principles, agile development methodologies, and effective
communication and collaboration skills.

Learning and Teaching Strategies

olatlly olasl] ol il

Strategies

The learning and teaching strategies for Web Development 2 can include:

1.

Lectures: The instructor delivers lectures to introduce new concepts,
explain theoretical aspects, and provide examples and case studies
related to web development.

Hands-on Coding: Students engage in hands-on coding exercises and
projects to apply their knowledge and skills in building web
applications. They can work individually or in groups to develop real-
world projects, implementing the concepts learned during the course.
Code Review and Feedback: Students participate in code reviews where
they share their code with peers and receive feedback. This promotes
collaboration, peer learning, and improvement of coding practices.
Practical Examples and Demonstrations: The instructor demonstrates
practical examples and showcases real-world applications to illustrate
the concepts and techniques in web development. This helps students
visualize the application of the learned concepts.

Discussion and Debate: Students engage in discussions and debates on
topics related to web development, such as emerging trends, best
practices, and ethical considerations. This encourages critical thinking,
problem-solving, and the exploration of different perspectives.

Guest Speakers and Industry Experts: Inviting guest speakers and
industry experts to share their experiences and insights in web
development can provide students with valuable industry perspectives
and practical knowledge.

. Workshops and Tutorials: Conducting workshops and tutorials where

students can work on specific web development tasks, solve problems,
and learn new tools and technologies. These sessions can be interactive
and allow students to receive guidance and support from the instructor.
Online Resources and Self-Study: Providing access to online resources,
tutorials, documentation, and coding exercises to encourage self-study
and exploration. Students can deepen their understanding of web
development concepts and technologies at their own pace.
Project-based Learning: Assigning individual or group projects that
require students to design, develop, and deploy web applications. This
allows them to apply their knowledge, practice problem-solving skills,
and gain hands-on experience in real-world scenarios.

. Assessments and Feedback: Conducting regular assessments, quizzes,

and assignments to evaluate students' understanding of the concepts and
their ability to apply them. Providing timely feedback helps students
identify areas of improvement and reinforce their learning.

. Collaborative Learning: Encouraging collaboration among students

through group work, pair programming, or collaborative coding
sessions. This fosters teamwork, communication skills, and the sharing
of knowledge and expertise.

. Industry Case Studies: Presenting case studies of successful web

development projects and applications in various industries. This helps
students understand the practical application of web development skills

and the challenges faced in real-world scenarios.

These strategies aim to create an engaging and interactive learning environment
that promotes active participation, practical application of knowledge, and
continuous learning in the field of web development.

Delivery Plan (Weekly Syllabus)

Syl £ g zlgiall

Material Covered

. Introduction to Server-Side Programming

o Overview of server-side programming languages (e.g., PHP, Python, Node.js)
e Setting up a development environment with a server-side language and a web server

Database Integration

e Introduction to database systems (e.g., MySQL, PostgreSQL)
o Connecting a web application to a database
e Querying and manipulating data using SQL

Advanced JavaScript and DOM Manipulation

o JavaScript libraries and frameworks for front-end development (e.g., React,
Angular)

e Advanced DOM manipulation techniques

¢ Handling asynchronous operations using AJAX and promises

Week 6-7

Web Application Security

e Common web vulnerabilities (e.g., Cross-Site Scripting, SQL injection)
e Techniques for securing web applications
o Implementing user authentication and authorization

Week 8-9

Server-Side Frameworks

e Introduction to popular server-side frameworks (e.g., Laravel, Django, Express.js)
e Building dynamic web applications using a framework
e Implementing RESTful APIs

Week 10-11

Version Control and Collaboration

¢ Introduction to version control systems (e.g., Git)
e Collaborative web development using Git and GitHub
¢ Deployment strategies for web applications

Week 12-13

Testing and Debugging

o Writing unit tests for web applications
e Debugging techniques for identifying and fixing issues
o Performance optimization and code profiling

Week 14-15

Project Development and Presentation

e Applying the learned concepts to develop a complete web application
e Project planning, development, and documentation
e Presenting and demonstrating the web application

Delivery Plan (Weekly Lab. Syllabus)
iseall (£l Zlgiall

Material Covered

Review of Web Development Basics

e Refreshing HTML, CSS, and JavaScript concepts
o Recap of responsive web design principles

Advanced CSS Techniques

o Implementing CSS animations and transitions
e Using CSS preprocessors (e.g., Sass, Less)
o Creating CSS frameworks and libraries

Advanced JavaScript Concepts

e Exploring advanced JavaScript topics (e.g., closures, prototypes)
e Working with JavaScript libraries (e.g., jQuery, Lodash)
e Building modular JavaScript code using modules and namespaces

Single-Page Applications (SPA)

o Introduction to SPA architecture and frameworks (e.g., Angular, React, VVue)
e Building a simple SPA using a chosen framework
« Routing and navigation in SPAs

Server-Side Scripting with Node.js

15. Setting up a Node.js development environment
16. Writing server-side JavaScript code using Node.js
17. Implementing server-side functionality and APIs

Database Integration

¢ Introduction to database management systems (e.g., MySQL, MongoDB)
¢ Interacting with databases using server-side scripting (e.g., CRUD operations)
¢ Implementing data persistence in web applications

Authentication and Authorization

o Implementing user registration and login functionality

o Exploring authentication and authorization techniques (e.g., sessions, tokens)

« Securing web applications against common vulnerabilities (e.g., cross-site scripting,
SQL injection)

API Development

o Designing and implementing RESTful APIs
o Handling API requests and responses
o Documentation and testing of APIs

Web Performance Optimization

e Techniques for optimizing web page load times

¢ Implementing caching strategies

¢ Analyzing and improving website performance using tools (e.g., PageSpeed Insights,
Lighthouse)

Week 10

Advanced Front-End Frameworks

e Exploring advanced features and components of front-end frameworks (e.g., Angular,
React)
¢ Building complex web applications with front-end frameworks

Week 11-
14

Web Project Development

o Applying the concepts learned to develop a complex web project
¢ Planning, designing, and implementing a dynamic web application
e Testing, debugging, and optimizing the web project

Week 15

Project Presentation and Evaluation

Learning and Teaching Resources
wf).\ﬂb M\).}La_n

Text Available in the Library?

Required Texts No

Recommended

Texts
Websites

