4.2 Poisson Process

The counting process $\{X(t), t \ge 0\}$ is said to be a Poisson process having rate (intensity) $\lambda > 0$ if:

- 1. X(0) = 0
- 2. For any time points $t_0=0 < t1 < t2 < < t_n$, the process increments: $X(t_1)-X(t_0)$, $X(t_2)-X(t_1)$,..., $X(t_n)-X(t_{n-1})$ are independent increments.
- 3. The number of events in any interval X(t+s)-X(s) has a Poisson dist with mean λt , i.e:

$$P_{r}{X(t+s)-X(s)=n}=P_{r}{x(t)=n}$$

$$=\frac{(\lambda t)^{n}e^{-\lambda t}}{n!} \qquad n = 0,1,2,...$$

Then since a Poisson process has stationary increments when:

$$E\{X(t)\}=\lambda t$$
, $var\{X(t)\}=\lambda t$

Thus the expected number of events in an interval of unit length is λ .

4.3 Assumption of Poisson Process

In an interval of infinite length h, then:

1. The probability of exactly one event occurs in any short interval h is:

$$P_r{X_{t+h}-X_t=1}=\lambda h + o(h) = P_1(h)$$

Where
$$\lim_{h\to 0} \frac{O(h)}{h} = 0$$