$$\therefore P_{ij}^n = \sum_{k=0}^{\infty} P_{ik} P_{kj}^{n-1}$$

In general we have:

$$P_{ij}^{n+m} = \sum_{k=0}^{\infty} P_{ik}^n P_{kj}^m$$

With:

$$P_{ij}^{0} = \begin{cases} 1 & if & i = j \\ 0 & if & i \neq j \end{cases}$$

And this is the chapman-kolmogrov equation.

Example(1): Consider a M.C with transition matrix

$$1 \qquad 2$$

$$P = \begin{cases} 1 & 0 & 1 \\ 0.5 & 0.5 \end{cases}$$

Find:

- 1. Two step transition matrix
- 2. 4- step transition matrix
- $3. P_{12}^2, P_{21}^2, P_{12}^4, P_{22}^4$

## 3.6 The Classification of States and Chains

## A. Classification of Chains

## 1. Accessibility

إمكانية الوصول

If state (j) of chain can be reached from state(i) in any number of transition i.e  $(P_{ij}^n > 0 \text{ for any } n > 0)$ , then the state (j) is said to be accessible from state(i) to and denoted by  $(i \longrightarrow j)$ .

Ex:

$$\begin{array}{ccccc}
0 & 1 & 2 \\
 & 0 & 0.3 & 0.7 \\
P=1 & 0.4 & 0 & 0.6 \\
2 & 0.8 & 0.2 & 0
\end{array}$$

$$\begin{array}{ccccc}
0 & \longrightarrow 1 & 0 & \longrightarrow 2 \\
 & 1 & \longrightarrow 0 & 1 & \longrightarrow 2 \\
 & 2 & \longrightarrow 0 & 2 & \longrightarrow 1
\end{array}$$

## 2. Communication States

خاصية المبادلة أو الاتصال

If two state (i) and (j) each accessible to each other then they are said to be communicated and denoted by (i  $\iff$ ).

The communication has the following properties:

- a) Reflexivity
  For any state(i) then (i ← i).
- b) Symmetry
  If  $(i \longleftrightarrow j)$  then  $(j \longleftrightarrow i)$ .
- c) Transitivity



