4- Forming confidence limits for the mean response at $X_0 = 40$.

By solving the above example, the required values for the confidence limits for the mean response are as follows:

First, we substitute the value of $X_0 = 40$ into the estimated regression line equation to obtain \hat{y}_0 as follows:

$$\hat{y}_{X=40} = 85.043 + 1.1396(40)$$
$$\hat{y}_{X=40} = 130.627$$

The average response variance will be:

$$V(\hat{y}_0) = \frac{\hat{\sigma}^2}{n} + (X_0 - \bar{X})^2 \frac{\hat{\sigma}^2}{S_{XX}}$$

$$V(\hat{y}_0) = \hat{\sigma}^2 \left(\frac{1}{n} + \frac{(X_0 - \bar{X})^2}{S_{XX}} \right)$$

$$V(\hat{y}_0) = (77.9) \left(\frac{1}{10} + \frac{(40 - 49.1)^2}{2048.9} \right)$$

$$V(\hat{y}_0) = 10.938$$

The standard deviation of the variance of the average response will be:

$$\sqrt{V(\hat{y}_0)} = \sqrt{10.938} = 3.31$$

Thus, the confidence limits for the mean response at point $X_0 = 40$ are as follows:

$$\hat{y}_{0} - t(\frac{\alpha}{2}, n - 2)S(\hat{y}_{0}) \le E(y/X_{0}) \le \hat{y}_{0} + t(\frac{\alpha}{2}, n - 2)S(\hat{y}_{0})$$

$$130.6 - (2.306)(3.31) \le E(y/X_{0}) \le 130.6 + (2.306)(3.31)$$

$$123.0 \le E(y/X_{0}) \le 138.2$$

Regression through the origin

In some cases of regression, the regression line may pass through the origin. In this case, the linear model is without the parameter β_0 (No intercept).

$$y_i = \beta_1 x_{i1} + e_i$$
 , $i = 1, 2, ..., n$

That is, the equation of the regression line is as shown in the following figure:

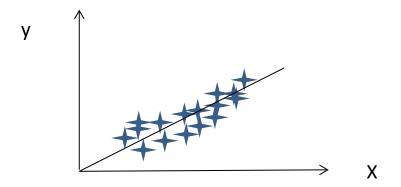


Figure (5) shows the relationship between x and y represented by a straight line.

To find the estimate of parameter β_1 using the least squares method, we follow the following

From the above equation we find that:

$$e_i = y_i - \beta_1 x_i$$

By squaring both sides and taking their sum, we get:

$$Q = \sum e_i^2 = \sum (y_i - \beta_1 x_i)^2$$

$$= \sum (y_i^2 - 2\beta_1 x_i y_i + \beta_1^2 X_i^2)$$

$$= \sum y_i^2 - 2\beta_1 \sum x_i y + \beta_1^2 \sum X_i^2$$

We differentiate with respect to β_1 to get:

$$\frac{\partial Q}{\partial \beta_1} = 0 - 2\sum_i x_i y + 2\beta_1 \sum_i X_i^2$$

Thus:

$$2\beta_1 \sum X_i^2 = 2\sum x_i y$$

Thus, the estimated parameter $\hat{\beta}_1$ will be:

$$\hat{\beta}_{1} = \frac{\sum x_{i} y}{\sum X_{i}^{2}}$$

Thus:

$$\hat{y}_i = \hat{\beta}_1 x_i$$

The estimated value of the variance of the population σ^2 can be obtained as follows:

$$SSe = \sum e_{i}^{2} = \sum (y_{i} - \hat{y}_{i})^{2}$$

$$= \sum (y_{i} - \hat{\beta}_{1}x_{i})^{2}$$

$$= \sum (y_{i}^{2} - 2\beta_{1}x_{i}y_{i} + \beta_{1}^{2}X_{i}^{2})$$

$$= \sum y_{i}^{2} - 2\beta_{1}\sum x_{i}y + \beta_{1}^{2}\sum X_{i}^{2}$$

$$= \sum y_{i}^{2} - 2\beta_{1}\sum x_{i}y + \beta_{1}\sum X_{i}^{2}\sum X_{i}^{2}$$

$$= \sum y_{i}^{2} - 2\beta_{1}\sum x_{i}y + \beta_{1}\sum x_{i}y$$

$$= \sum y_{i}^{2} - 2\beta_{1}\sum x_{i}y + \beta_{1}\sum x_{i}y$$

$$\therefore SSe = \sum y_{i}^{2} - \beta_{1}\sum x_{i}y$$

So MSe in this case will be:

$$\therefore MSe = \frac{SSe}{n-1} = \frac{\sum y_i^2 - \beta_1 \sum x_i y}{n-1}$$

The variance of parameter β_1 will be as follows:

$$S_{\hat{\beta}_{l}}^{2} = \frac{MSe}{\sum X_{i}^{2}}$$

The question now is which model do we use, with β_0 or without it? In this case we suggest the following:

- 1- Draw the scatter plot which gives some indication about the regression line in terms of whether it may pass through the origin or not.
- 2- Use the model that contains β_0 and then test whether H_0 : $\beta_0 = 0$ or not, if the null hypothesis is accepted then use the model that does not contain β_0 as it may be more suitable for the data.
- 3- Use both models and compare the mean squares of the residuals MSe, the model that has a lower MSe is the best fit for the data.

Example:

The following data represents the number of units of production manufactured X and their different total labor costs y during a certain period and taken from 12 similar factories.

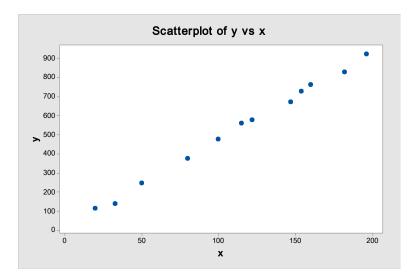
y ; 2	X_{i}^{2}	$X_{i}y_{i}$	X_{i}	y_{i}	ت
12996	400	2280	20	114	1
848241	38416	180516	196	921	2
313600	13225	64400	115	560	3
60025	2500	12250	50	245	4
330625	14884	70150	122	575	5
225625	10000	47500	100	475	6
19044	1089	4554	33	138	7
528529	23716	111958	154	727	8
140625	6400	30000	80	375	9
448900	21609	98490	147	670	10
685584	33124	150696	182	828	11
580644	25600	121920	160	762	12
4194438	190963	894714	1359	6390	المجموع

Note here that when there are no units produced, the cost is zero, i.e. when X=0, Y=0, so the model without the β_0 parameter may be more suitable for the data. In addition, if we notice the scatter plot, it indicates that the regression line may pass through the origin (0,0).

Sol:

1-We draw the scatter diagram between X and Y as follows:

From the figure, it is noted that most of the pattern of points indicates that they pass through the origin. Thus, we will estimate the model without the parameter.



2-We find the columns for each of $X_i y_i$, X_i^2 and y_i^2 . Thus, the estimated parameter $\hat{\beta}_1$ is as follows:

$$\hat{\beta}_1 = \frac{\sum x_i y}{\sum X_i^2} = \frac{894714}{190963} = 4.685$$

Thus, the equation of the regression line is as follows:

$$\hat{y}_i = 4.685x_i$$

The estimate of the variance of the population σ^2 will be as follows:

$$\therefore MSe = \frac{SSe}{n-1} = \frac{\sum y_i^2 - \beta_1 \sum x_i y}{n-1}$$
$$= \frac{4194438 - (4.685)(894714)}{12 - 1}$$
$$= 223.399$$

The variance of parameter $\hat{\beta}_1$ is as follows:

$$S_{\hat{\beta}_{1}}^{2} = \frac{MSe}{\sum X_{i}^{2}}$$

$$S_{\hat{\beta}_{1}}^{2} = \frac{223.399}{190963}$$

$$S_{\hat{\beta}_{1}}^{2} = 0.00117$$

The confidence limits will be as follows:

$$\begin{split} \hat{\beta}_{1} - t &(\frac{\alpha}{2}, n - 2) S (\hat{\beta}_{1}) \leq \beta_{1} \leq \hat{\beta}_{1} + t (\frac{\alpha}{2}, n - 2) S (\hat{\beta}_{1}) \\ 4.685 - &(2.201) (0.0342) \leq \beta_{1} \leq 4.685 + (2.201) (0.0342) \\ 4.61 \leq \beta_{1} \leq 4.76 \end{split}$$

If we use the linear model which contains the parameter β_0 , we find that:

$$S_{XX} = 37056.25$$

$$S_{yy} = 791763$$

$$\hat{\beta}_0 = 9.75$$

$$\hat{\beta}_1 = 4.615$$

$$\hat{y}_i = 9.75 + 4.62X_i$$

$$SSe = 2236.13$$

$$MSe = \frac{2236.13}{10} = 223.612$$

$$S_{\hat{\beta}_0} = 9.799$$

If we conduct a t-test on parameter β_0 according to the following hypothesis:

$$H_0: \beta_0 = 0$$
$$H_1: \beta_0 \neq 0$$

This will result in the following: