Chapter one

Set theory

1.1 - Basic set theory

Definitions:

1- <u>Set</u>: A set is collection of objects, the objects are called element (Events) of the set.

A set is usually denoted by capital letter e.g. A,B,C,...; If X is an event belonging to the set A, we shall write $x \in A$ if x is not an event or element of A, we shall $x \notin A$.

Exp) $A=\{0,1,2,3,4\}$ and $B=\{X:X<8\}$ where $\{X:positive integer\}$ عدد

- \therefore **B** = { 1,2,3,4,5,6,7 }
- 2- <u>Sample space</u> (S, Ω): The all possible outcomes of a random experiment are called the sample space .
- Exp) The experiment of tossing a coin is:

$$S = \{ H, T \}$$

- 3- <u>Random Experiment :</u> All outcomes of the experiment known . وهي كل المخرجات من التجربة المعلومة
- 4- $\underline{\textit{Events}}$: An event is any collection of possible outcomes of an experiment that is any subset of S

Exp)
$$S = \{1, 2, 3, 4, 5, 6\}$$

 $X = \{3\}$
 $Y = \{2, 3\}$
 $Z = \{1, 2, 3, 4, 5, 6\} = S$

5- \underline{Subset} : The set A is said to be a subset of S if every element of A is also an element of S.

يقال ان A مجموعة جزئية من فضاء الحالة او العينة ، اذا كانت كل العناصر الموجودة في A أيضا موجودة في فضاء العينة

i.e. A is contained in \boldsymbol{S} ; that is mean :

$$x \in (A \subset S)$$

 $x \in A$ and $x \in S$

6- $\underline{\it Empty \, set}$: A set is said to be an empty set or null set if it has no element , and is denoted by \emptyset ;

$$\emptyset \subset S$$

7- $\underline{\textit{Equal set}}$: Two set A and B are said to be equal if every elements in A are contained in B also .

$$A \subset B$$
 and $B \subset A$

Then
$$A = B$$

8-<u>Universal set</u>: All set under investigation are assumed to be subset of the space, we shall call it the space and denote it by S or Ω .

9- $\overline{\it The\ complement}$: The complement of the set A with respect to the $\it S$, denoted by $(\overline{\it A}\,, {\it A}^c,\ {\it A}^{'})$ it is the set of all the element that are in $\it S$ but not in $\it A$.

That is mean: $A^c = \{x: x \in s \text{ and } x \notin A\}$.

10-<u>set difference</u>: Let A and B be any two subset of S, the set of all points in A that are not in B, will denoted by $(A/B \ or \ A-B)$

That is mean :-
$$A/B = \{x: x \in A \ and \ x \notin B \}$$

$$A^c = S/A$$

$$A^c = \{x: x \in S \ and \ x \notin A \}$$

- If A is a subset of B then $A \subset B$ and read A contained B or $B \supset A$ and read B contains A.
- If $A \subset B$ and $B \subset A$ then A = B.
- Exp) Let S be the set of all natural numbers; $S = \{1, 2, 3, 4, 5, \dots \}$ Define: $A = \{x: x \text{ is an even number, } x \in S\}$

And $B = \{ y: y \text{ is a multiple of } 3, y \in S \}$

Find: $(A^c, B^c, A/B, B/A)$

Solution:

$$A = \{ 2, 4, 6, 8, 10, 12, 14, 16, ... \}$$
 $B = \{ 3, 6, 9, 12, 15, 18, 21, ... \}$
 $A^{c} = \{ 1, 3, 5, 7, 9, ... \} ; A^{c} = \{ x : x \in S \text{ and } x \notin A \}$
 $B^{c} = \{ 1, 2, 4, 5, 7, 8, 10, 11, ... \}$
 $A/B = \{ x : x \in A \text{ and } x \notin B \}$
 $A/B = \{ 2, 4, 8, 10, 14, 16, 20, ... \}$
 $B/A = \{ 3, 9, 15, 21, 27, ... \}$

11- $\underline{Union\ of\ set}$: Let A and B be any two subset of S, the union of A and B, denoted by $(A \cup B)$; is the set of all elements belonging either to A or to B or both.

$$(A \cup B) = \{x : either \ x \in A \text{ or } x \in B \text{ or both } \}$$

$$x \in (A \cup B) = x \in A \text{ or } x \in B$$

$$x \notin (A \cup B) = x \notin A \text{ and } x \notin B$$

12-Intersection of set: Let A and B be any two subset of S, The intersection denoted by $(A \cap B)$ is the set of all elements that are in both A and B.

$$(A \cap B) = \{x : x \in A \text{ and } x \in B \}$$

 $x \in (A \cap B) = x \in A \text{ and } x \in B$
 $x \notin (A \cap B) = x \notin A \text{ or } x \notin B$

• Two sets **A** and **B** are said to be disjoint or mutually exclusive if they have no common elements i.e. :

$$A \cap B = \emptyset$$

• Venn-Diagrams:

The set operations can be represented by diagrams which are called Venn diagrams .

$$A^c = \{ x : x \in S \mid and \mid x \notin A \}$$

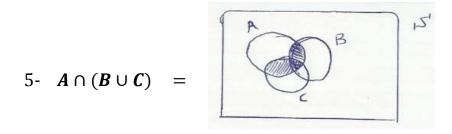
$$A/B = \{ x: x \in A \mid \mathbf{and} \mid x \notin B \}$$

$$3- A \cup B =$$

$$(A \cup B) = \{x: x \in A \text{ or } x \in B \text{ or both } \}$$

$$4- A \cap B =$$

$$(A \cap B) = \{x: x \in A \text{ and } x \in B \}$$



6-
$$A \cap B = \emptyset$$

1.2- Some Fundamental Theorems

بعض النظريات الأساسية

- Let \boldsymbol{A} , \boldsymbol{B} and \boldsymbol{C} be any subset of \boldsymbol{S}
- 1- Idempotent Laws

قانون الثبات

 $A \cup A = A$ and $A \cap A = A$

2- Associative Laws

قانون التبديل

 $A \cup (B \cup C) = (A \cup B) \cup C = A \cup B \cup C$

3- Commutative Laws

قانون التساوي

 $A \cup B = B \cup A$ and $A \cap B = B \cap A$

قانون التوزيع

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

5- Identity Laws

قانون الأحادبة

$$A \cup \emptyset = A$$
 and

$$A \cap \emptyset = \emptyset$$

$$A \cup S = S$$
 and $A \cap S = A$

$$A \cap S = A$$

6- Complement Laws

قانون المتممة او المكمل

$$A \cup A^c = S$$

$$A \cup A^c = S$$
 and $A \cap A^c = \emptyset$

$$(A^c)^c = A$$

$$(A^c)^c = A$$
 ; $S^c = \emptyset$ and $\emptyset^c = S$

7- De Morgan's Laws

قانون دي موركان

$$(A \cup B)^c = A^c \cap B^c$$

$$(A \cap B)^c = A^c \cup B^c$$

** To prove the distributive Laws:

1-
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

Proof/

Let $x \in A \cup (B \cap C) \rightarrow x \in A \text{ or } x \in (B \cap C)$

- \rightarrow $x \in A$ or $(x \in B \text{ and } x \in C)$
- \rightarrow $(x \in A \text{ or } x \in B) \text{ and } (x \in A \text{ or } x \in C)$
- \rightarrow $(x \in (A \cup B) \text{ and } x \in (A \cup C))$
- $\rightarrow x \in (A \cup B) \cap (A \cup C)$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$
 والعكس صحيح