FAT32 Boot Sector, Locating Files and Dirs

Classes COP4610 / CGS5765 Florida State University

Outline

- Recap of last week's lecture
 - Introduction to project 3
 - Introduction to FAT32 structure
- Starting Project 3
 - How to parse the boot sector
 - Finding the root directory and files

Project 3

- Reminder: It's a group project
- 3 people in each group, everyone gets the same grade
- Email your group member's name before the next Friday
- Also email if you are looking for a group

Recap – Intro to Project 3 and FAT32

Project 3

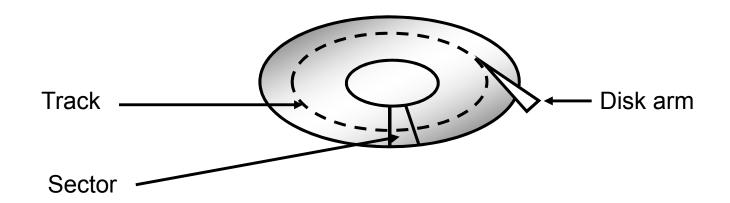
- You will create a user-space utility to manipulate a FAT32 file system image
 - No more kernel programming!

FAT32 Manipulation Utility

Utility only recognizes the following built-in commands:

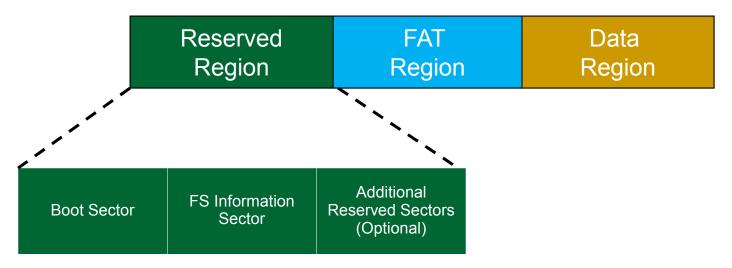
- open
- close
- create
- rm
- size

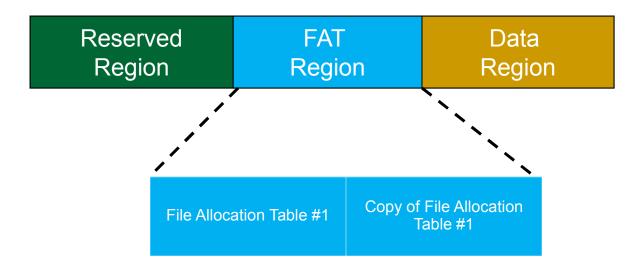
- cd
- Is
- mkdir
- rmdir
- read
- write


Terminology

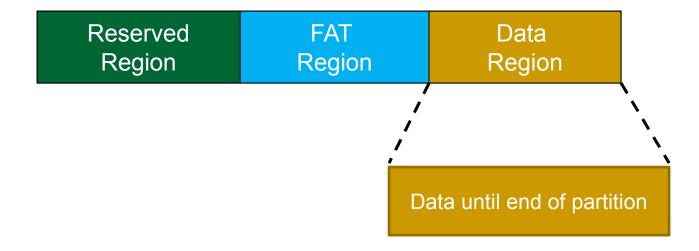
- Byte 8 bits of data, the smallest addressable unit in modern processors
- Sector Smallest addressable unit on a storage device. Usually this is 512 bytes
- Cluster FAT32-specific term. A group of sectors representing a chunk of data
- FAT Stands for file allocation table and is a map of files to data

FAT32 Disk Layout

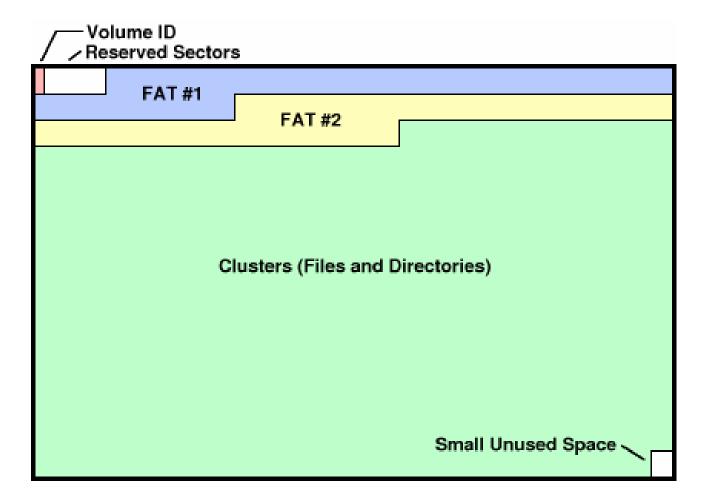

3 main regions...


Reserved Region

Reserved Region – Includes the boot sector, the extended boot sector, the file system information sector, and a few other reserved sectors


FAT Region

 FAT Region – A map used to traverse the data region. Contains mappings from cluster locations to cluster locations



Data Region

Data Region – Using the addresses from the FAT region, contains actual file/directory data

FAT32 Disk Layout

In this project's context, Volume ID basically means the Boot Sector

Where to begin?

- Mount the file system image with the OS FAT32 driver and take a look around
- Find the FAT32 spec from Microsoft in the lab website, have a look in it
 - This document is written for those who already know the FAT32 structure well, so may seem a bit difficult to understand at first.
 - However, it will be very useful once you start coding

Hint

- As you work, it might make sense to first take a look at the raw file system image
- Hexedit to the rescue!

\$> hexedit [filename]

- View files in hexadecimal or ASCII
- Why wouldn't you want to view the file system image file in your regular editor?

d user@cop4610: -																	X
00000000	EB	58	90	6D	6B	64	6F	73	66	73	00	00	02	01	20	00	.X.mkdosfs
00000010	02	00	00	00	00	F8	00	00	20	00	40	00	00	00	00	00	
00000020	00	00	02	00	F1	03	00	00	00	00	00	00	02	00	00	00	
00000030	01	00	06	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000040	00	00	29	6E	FA	2E	43	20	20	20	20	20	20	20	20	20)nC
00000050	20	20	46	41	54	33	32	20	20	20	0E	1F	BE	77	7C	AC	FAT32w .
00000060	22	C0	74	0B	56	B4	0E	BB	07	00	CD	10	5E	EB	F0	32	".t.V^2
00000070	E4	CD	16	CD	19	EB	FE	54	68	69	73	20	69	73	20	6E	This is n
00000080	6F	74	20	61	20	62	6F	6F	74	61	62	6C	65	20	64	69	ot a bootable di
00000090	73	6B	2E	20	20	50	6C	65	61	73	65	20	69	6E	73	65	sk. Please inse
000000A0	72	74	20	61	20	62	6F	6F	74	61	62	6C	65	20	66	6C	rt a bootable fl
000000B0	6F	70	70	79	20	61	6E	64	0D	OA	70	72	65	73	73	20	oppy andpress
000000C0	61	6E	79	20	6B	65	79	20	74	6F	20	74	72	79	20	61	any key to try a
000000D0	67	61	69	6E	20	2E	2E	2E	20	OD	0A	00	00	00	00	00	gain
000000E0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
000000F0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000100	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000110	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000120	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000130	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000140	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	.,
00000150	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000160	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000170	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000180	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000190	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	

Line numbers in hex

Constant																	
user@cop4610:	~																
00000000	EB	58	90	6D	6B	64	6F	73	66	73	00	00	02	01	20	00	.X.mkdosfs ^
00000010	02	00	00	00	00	F8	00	00	20	00	40	00	00	00	00	00	
00000020	00	00	02	00	F1	03	00	00	00	00	00	00	02	00	00	00	
00000030	01	00	06	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000040	00	00	29	6E	FA	2E	43	20	20	20	20	20	20	20	20	20)nC
00000050	20	20	46	41	54	33	32	20	20	20	0E	1F	BE	77	7C	AC	FAT32w .
00000060	22	CO	74	0B	56	B4	0E	BB	07	00	CD	10	5E	EB	F0	32	".t.V^2
00000070	E4	CD	16	CD	19	EB	FE	54	68	69	73	20	69	73	20	6E	This is n
00000080	6F	74	20	61	20	62	6F	6F	74	61	62	6C	65	20	64	69	ot a bootable di
00000090	73	6B	2E	20	20	50	6C	65	61	73	65	20	69	6E	73	65	sk. Please inse
000000A0	72	74	20	61	20	62	6F	6F	74	61	62	6C	65	20	66	6C	rt a bootable fl
000000B0	6F	70	70	79	20	61	6E	64	0D	0A	70	72	65	73	73	20	oppy andpress
000000C0	61	6E	79	20	6B	65	79	20	74	6F	20	74	72	79	20	61	any key to try a
000000D0	67	61	69	6E	20	2E	2E	2E	20	0D	0A	00	00	00	00	00	gain
000000E0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
000000F0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000100	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000110	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000120	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000130	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000140	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	.,
00000150	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000160	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000170	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000180	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000190	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	

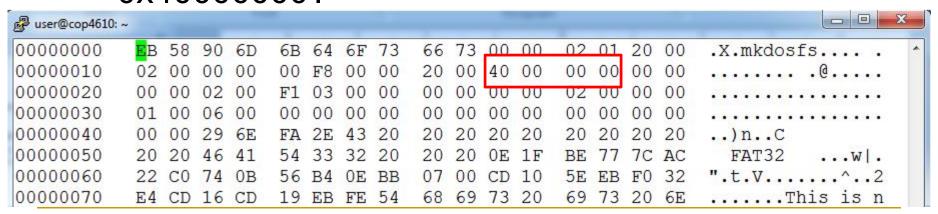
Content in hex

-																	
g user@cop4610:																	
00000000	EB	58	90	6D	6B	64	6F	73	66	73	00	00	02	01	20	00	.X.mkdosfs ^
00000010	02	00	00	00	00	F8	00	00	20	00	40	00	00	00	00	00	
00000020	00	00	02	00	F1	03	00	00	00	00	00	00	02	00	00	00	
00000030	01	00	06	00	00	00	00	00	00	00	00	0.0	00	00	00	00	
00000040	00	00	29	6E	FA	2E	43	20	20	20	20	20	20	20	20	20)nC
00000050	20	20	46	41	54	33	32	20	20	20	0E	1F	BE	77	7C	AC	FAT32w .
00000060	22	CO	74	0B	56	B4	0E	BB	07	00	CD	10	5E	EB	F0	32	".t.V^2
00000070	E4	CD	16	CD	19	EB	FE	54	68	69	73	20	69	73	20	6E	This is n
00000080	6F	74	20	61	20	62	6F	6F	74	61	62	6C	65	20	64	69	ot a bootable di
00000090	73	6B	2E	20	20	50	6C	65	61	73	65	20	69	6E	73	65	sk. Please inse
0A000000	72	74	20	61	20	62	6F	6F	74	61	62	6C	65	20	66	6C	rt a bootable fl
000000B0	6F	70	70	79	20	61	6E	64	0D	0A	70	72	65	73	73	20	oppy andpress
000000C0	61	6E	79	20	6B	65	79	20	74	6F	20	74	72	79	20	61	any key to try a
000000D0	67	61	69	6E	20	2E	2E	2E	20	0D	0A	00	00	00	00	00	gain
000000E0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
000000F0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000100	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000110	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000120	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000130	00	00	00	00	00	00	0.0	00	00	00	00	0.0	00	00	00	00	
00000140	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000150	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000160	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000170	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000180	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000190	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	

Content in printable ASCII

user@cop4610: ~									-			-					
00000000	EB	58	90	6D	6B	64	6F	73	66	73	00	00	02	01	20	00	.X.mkdosfs ^
00000010	02	00	00	00	00	F8	00	00	20	00	40	00	00	00	00	00	
00000020	00	00	02	00	F1	03	00	00	00	00	00	00	02	00	00	00	
00000030	01	00	06	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000040	00	00	29	6E	FA	2E	43	20	20	20	20	20	20	20	20	20)nC
00000050	20	20	46	41	54	33	32	20	20	20	0E	1F	BE	77	7C	AC	FAT32w .
00000060	22	CO	74	0B	56	B4	0E	BB	07	00	CD	10	5E	EB	F0	32	".t.V^2
00000070	E4	CD	16	CD	19	EB	FE	54	68	69	73	20	69	73	20	6E	This is n
00000080	6F	74	20	61	20	62	6F	6F	74	61	62	6C	65	20	64	69	ot a bootable di
00000090	73	6B	2E	20	20	50	6C	65	61	73	65	20	69	6E	73	65	sk. Please inse
0A00000	72	74	20	61	20	62	6F	6F	74	61	62	6C	65	20	66	6C	rt a bootable fl
000000B0	6F	70	70	79	20	61	6E	64	0D	0A	70	72	65	73	73	20	oppy andpress
000000C0	61	6E	79	20	6B	65	79	20	74	6F	20	74	72	79	20	61	any key to try a
000000D0	67	61	69	6E	20	2E	2E	2E	20	OD	0A	00	00	00	00	00	gain
000000E0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
000000F0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000100	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000110	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000120	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000130	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000140	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	.,
00000150	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000160	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000170	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000180	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000190	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	

Hexadecimal Hints


- Hex is base 16 one hexadecimal can represent 0-15
- It takes 4 binary bits to represent values 0-15
 - 0000 = 0
 - **1111 = 15**

Hexadecimal Hints

- If it takes 4 bits to represent one hexadecimal number, it takes 8 bits to represent two hexadecimal numbers
 - □ 8 bits = 1 byte
- Two hex numbers together symbolize one byte
 - That's why hex numbers are in groups of two

Endianness

- FAT32 is represented in little endian byte order
 - Reading left to right, you encounter leastsignificant byte first
 - What 32-bit number is this? 0x0000040 or 0x40000000?

Endianness

Why are characters in order (readable) if some numbers are not?

🚱 user@cop4610: ∼																	
00000000	EB	58	90	6D	6B	64	6F	73	66	73	00	00	02	01	20	00	.X.mkdosfs ^
00000010	02	00	00	00	00	F8	00	00	20	00	40	00	00	00	00	00	
00000020	00	00	02	00	F1	03	00	00	00	00	00	00	02	00	00	00	
00000030	01	00	06	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000040	00	00	29	6E	FA	2E	43	20	20	20	20	20	20	20	20	20)nC
00000050	20	20	46	41	54	33	32	20	20	20	0E	1F	BE	77	7C	AC	FAT32w .
00000060	22	CO	74	0B	56	B4	0E	BB	07	00	CD	10	5E	EB	F0	32	".t.V^2
00000070	E4	CD	16	CD	19	EB	FE	54	68	69	73	20	69	73	20	6E	This is n
00000080	6F	74	20	61	20	62	6F	6F	74	61	62	6C	65	20	64	69	ot a bootable di
00000090	73	6B	2E	20	20	50	6C	65	61	73	65	20	69	6E	73	65	sk. Please inse
000000A0	72	74	20	61	20	62	6F	6F	74	61	62	6C	65	20	66	6C	rt a bootable fl
000000В0	6F	70	70	79	20	61	6E	64	0D	0A	70	72	65	73	73	20	oppy andpress

Endianness

- You must account for little endianness across bytes when reading in numbers of size larger than one byte
 - Characters are only one byte, no re-ordering necessary

Starting Project 3

File Allocation Table (FAT)

 Contains a chain of all the clusters belonging to a particular file

 Basically a big array of 32 bit integers (Hence the file system is called FAT32)

File Allocation Table (FAT)

- Each integer's position in the array corresponds to a cluster number
- The value stored there indicates the next cluster of the file
- An EoC value indicates the end of the cluster chain for that file

File Allocation Table (FAT)

XXXXXXXX	XXXXXXXX	00000009	00000004
00000005	00000007	00000000	80000000
FFFFFFF	0000000A	0000000B	00000011
000000D	000000E	FFFFFFF	00000010
00000012	FFFFFFF	00000013	00000014
00000015	00000016	FFFFFFF	00000000
00000000	00000000	00000000	00000000
00000000	00000000	00000000	00000000
00000000	00000000	00000000	00000000
00000000	00000000	00000000	00000000
00000000	00000000	00000000	00000000
00000000	00000000	00000000	00000000
00000000	00000000	00000000	00000000
00000000	00000000	00000000	00000000
00000000	00000000	00000000	00000000
00000000	00000000	00000000	00000000

Root Directory:

2, 9, A, B, 11

File #1:

3, 4, 5, 7, 8

File #2:

C, D, E

File #3:

F, 10, 12, 13, 14, 15, 16

Steps to read from a FAT32 image

- Locate, read, and extract important info from the Boot Sector
- Locate the Root Directory, get the list of files and folders
- Access the files and directories using information from the Root Directory and the FAT32 table

Parse the Boot Sector

Where to find the Boot Sector?

- First 512 bytes of the disk (or, in our case, the 'image')

Important Boot Sector Information

- Size of each region
 - BPB_BytesPerSec
 - BPB SecPerClus
 - BPB RsvdSecCnt
 - BPB NumFATS
 - BPB_FATSz32
- Root directory (first directory in tree)
 - BPB_RootClus

Important Boot Sector Information

- Warning: this list is not exhaustive!
- Check the "Boot Sector and BPB Structure" in MS FAT32 File System Spec for:
 - The complete list of attributes
 - Their significance
 - Where they are located within the Boot Sector

Important Boot Sector Information

- Example: extracting BPB_BytesPerSector
 - Offset 11, size 2 bytes
 - 0x0200 = 512

g user@cop4610:	~		7														
00000000	EB	58	90	6D	6B	64	6F	73	66	73	00	00	02	01	20	00	.X.mkdosfs ^
00000010	02	00	00	00	00	F8	00	00	20	00	40	00	00	00	00	00	
00000020	00	00	02	00	F1	03	00	00	00	00	00	00	02	00	00	00	
00000030	01	00	06	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000040	00	00	29	6E	FA	2E	43	20	20	20	20	20	20	20	20	20)nC
00000050	20	20	46	41	54	33	32	20	20	20	0E	1F	BE	77	7C	AC	FAT32w .
00000060	22	C0	74	0B	56	B4	0E	BB	07	00	CD	10	5E	EB	F0	32	".t.V^2
00000070	E4	CD	16	CD	19	EB	FE	54	68	69	73	20	69	73	20	6E	This is n

Next Steps

 After you have parsed the boot sector and saved key values, you may want to find the root directory

Finding the Root Directory

Figure out the root directory cluster number from the boot sector

Finding the Root Directory

- BPB_RootClus
 - Offset 44, size 4 bytes

💋 user@cop4610: ~			٠,									-					_ D X
00000000	EB	58	90	6D	6B	64	6F	73	66	73	00	00	02	01	20	00	.X.mkdosfs ^
00000010	02	00	00	00	00	F8	00	00	20	00	40	00	00	00	00	00	
00000020	00	00	02	00	F1	03	00	00	00	00	00	00	02	00	00	00	
00000030	01	00	06	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000040	00	00	29	6E	FA	2E	43	20	20	20	20	20	20	20	20	20)nC
00000050	20	20	46	41	54	33	32	20	20	20	0E	1F	BE	77	7C	AC	FAT32w .
00000060	22	CO	74	0B	56	B4	0E	BB	07	00	CD	10	5E	EB	F0	32	".t.V^2
00000070	E4	CD	16	CD	19	EB	FE	54	68	69	73	20	69	73	20	6E	This is n

Figure out where the Data Region starts in the disk

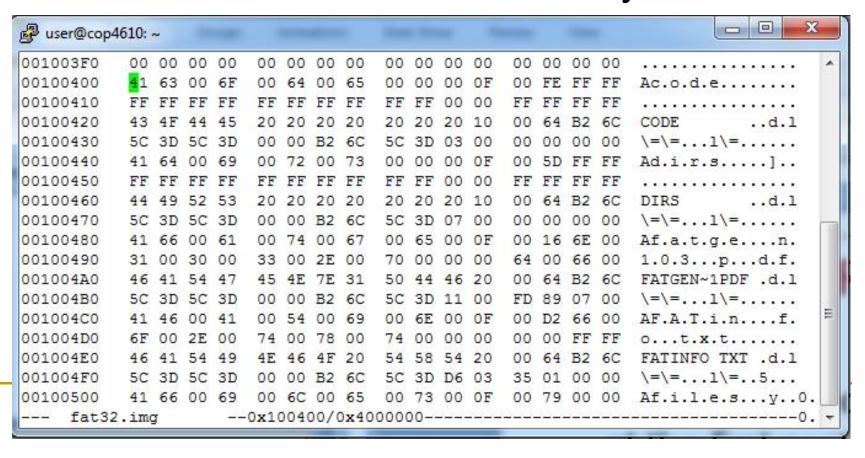
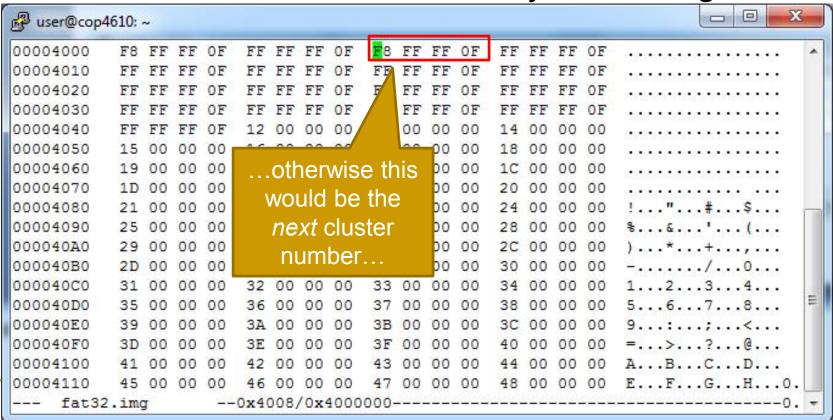

 Figure out where the Root Directory starts in the data region, where N=cluster number

 Figure out where the Root Directory starts in the data region, where N=cluster number

```
FirstSectorofCluster = ((N - 2) * BPB_SecPerClus) + FirstDataSector;
```

- This gives the sector number of the first sector of any cluster N
- Check page 13 in MS FAT32 File System Spec for details

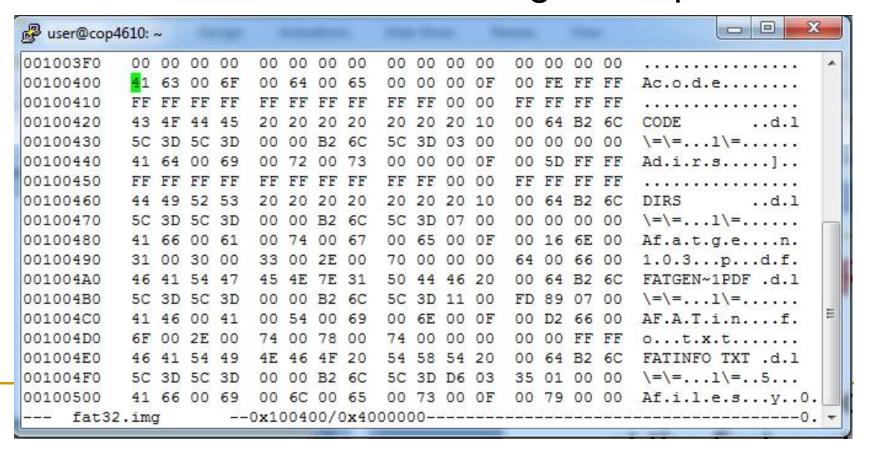
 Read in the root directory structure located at the first sector of the root directory cluster


- Does the root directory span more than one cluster? Look up the next cluster number in the FAT.
 - Find ThisFATSecNum and ThisFATEntOffset for the current cluster number
 - Go to ThisFATSecNum and read the 32-bit unsigned value starting at offset ThisFATEntOffset
 - FAT will either give you the next cluster number in the directory or the End of Cluster Chain value

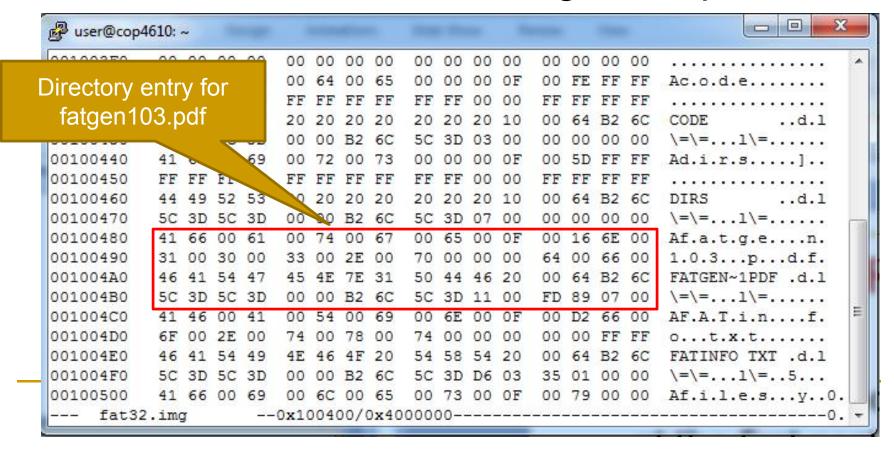
Next cluster number of root directory in FAT

Next cluster number of root directory in FAT

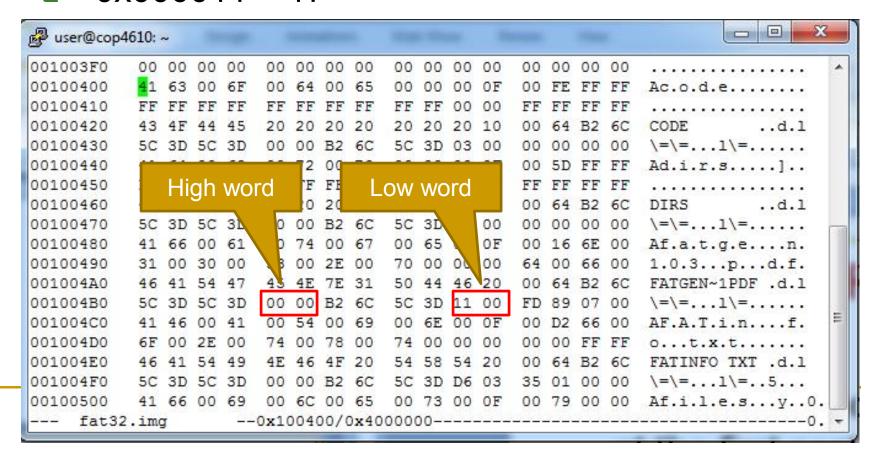
EoC=0x0FFFFFF8 – directory does not go on

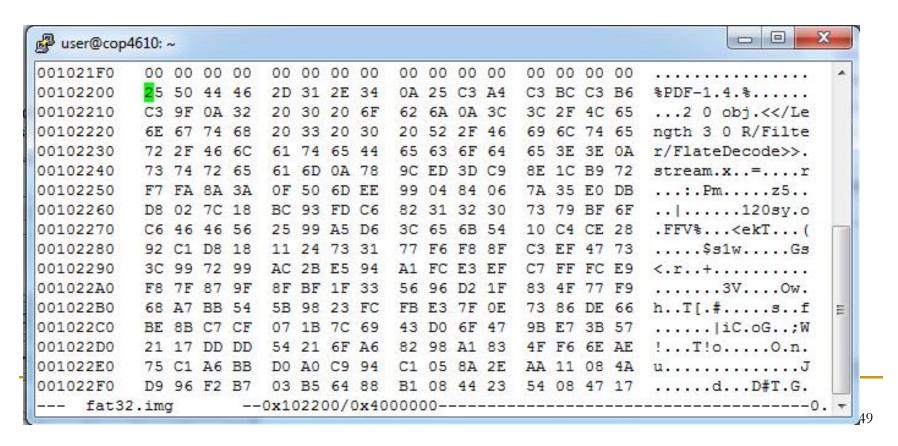

Directory Structure

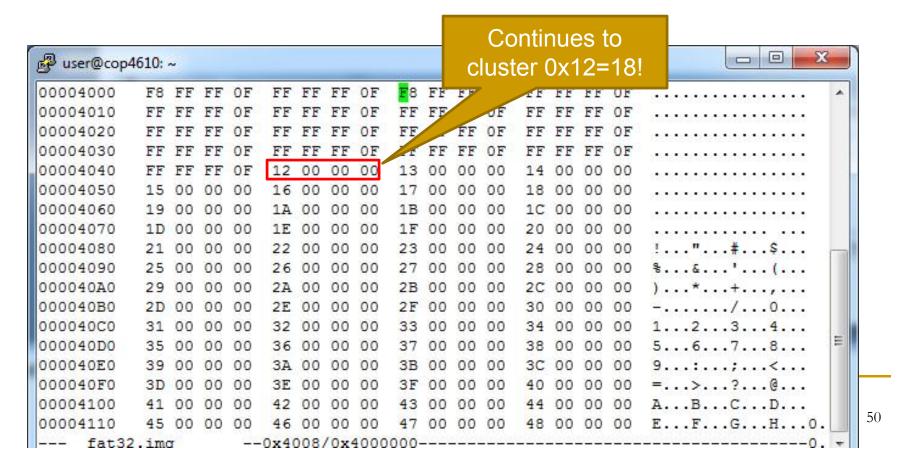
- Each directory is made up of one or more directory entries that contain
 - File name (or sub-directory name)
 - Attributes
 - First cluster number
 - Cluster number where file or directory in question starts
 - More...
- Check FAT Directory Structure (page 22) in MS FAT32 File System Spec for details


Finding Files and Directories

- Files and sub-directory entries can be found by going to their first cluster number
 - The directory entry for a file or sub-directory contains its first cluster number, remember?


 Suppose we have read in the root directory and want to find the file 'fatgen103.pdf'


 Suppose we have read in the root directory and want to find the file 'fatgen103.pdf'


- Entry's first cluster number
 - $0 \times 0000011 = 17$

Plug N=17 into FirstSectorofCluster equation, go to that sector...

- Does the file continue after this cluster?
 - Look up current cluster number 17 in FAT...

Summary of Finding Files/Dirs

- Find first cluster number in directory entry of the file or directory at hand
- Figure out the sector to read using cluster number and FirstSectorofCluster equation
- Read that cluster
- Figure out if the file or directory continues past cluster by looking up FAT[current cluster number]
 - If EoC mark stop
 - Else go to 3 with cluster=FAT[current cluster number]

To Do

- Write code to parse the Boot Sector. Get the necessary values, print them and check.
- Access the Boot Directory. Get the list of files and folders. Print them and check.
- Open a particular file and read from it. Use FAT Table info to get all the clusters associated with it.

Next Time

- Discussion of specific file operations (For example: writing to files, creating and deleting files and directories etc.)
- More discussion of directory entries