MODULE DESCRIPTION FORM

نموذج وصف المادة الدراسية

		Module Inf مادة الدر اسية				
Module Title		Optimization		Modu	le Delivery	
Module Type		BASIC		☑ Theory		
Module Code		MS412			□Lecture □ Lab	
ECTS Credits		6			☐ Lab	
SWL (hr/sem)		150	150		☐ Practical ☐ Seminar	
Module Level		4	Semester o	mester of Delivery 8		8
Administering Dep	artment	Type Dept code	College	Type Dept code		
Module Leader	Basim Abba	as Hassan	e-mail	basima	h@uomosul.edu	ı.iq
Module Leader's A	cad. Title	Professor	Module Lea	ader's Qu	alification	Ph.D
Module Tutor			e-mail			
Peer Reviewer Na	me		e-mail			
Scientific Committee Approval Date		15/9/2024	Version Nu	mber	1.0	

	Relation with other Modules		
	العلاقة مع المواد الدراسية الأخرى		
Prerequisite module		Semester	
Co-requisites module		Semester	

Module Aims, Learning Outcomes and Indicative Contents				
	أهداف المادة الدراسية ونتائج التعلم والمحتويات الإرشادية			
Module Objectives أهداف المادة الدر اسية	 This course deals with the basic concepts of unrestricted one-variable optimization problems. Providing the student with skills in solving unrestricted optimization problems with one variable using different methods and finding the optimal solution to the problem. Finding convexity, concavity, and maximum and minimum points for unrestricted problems with one variable. 			
	4- Understanding and solving Taylor series with one variable			
Module Learning Outcomes مخرجات التعلم للمادة الدراسية	Important: Write at least 6 learning outcomes, ideally equal to the number of weeks of study. 1- The student writes some terms 2- The student describes the model 3- To distinguish between the models 4- To explain the mathematical formula to the student 5- The student summarizes the steps for solving the mathematical formula 6- The student presents a problem from reality 7- That the student compare the methods of solution 8- To rearrange the solution method 9- To plan how to use the appropriate method in the solution 10- The student applies the model to a realistic situation 11- The student reveals the error in the form. 12- The student should schedule the results			
Indicative Contents المحتويات الإرشادية	Basic concepts: Optimization, Statement of an optimization problem, One variable unconstrained optimization problem, Definition: local minimum value, local maximum value, global minimum value, global maximum value, Concave and convex functions of a one variable, Necessary and sufficient conditions of a one variable functions, Taylor's series expansions [10 h] Methods of One variable unconstrained optimization problem Dichotomous method, introduction, Algorithm, examples. [10] Interval halving method, introduction, Algorithm, examples. [10] Golden section method, introduction, Algorithm, examples. [10] Newton method, introduction, Algorithm, examples. [5] Quasi newton method, introduction, Algorithm, examples. [6]			

Learning and Teaching Strategies				
	استراتيجيات التعلم والتعليم			
Strategies	Stimulating and encouraging students to understand the role of the game theory in the developed knowledge society and to become aware of the scientific applications of the competitive game theory using the computer through 1- Determine the scientific concepts and principles that will be learned and put forward in the form of a question or problem. 2- Preparing the educational materials needed to implement the lesson. 3- Formulating the problem in the form of sub-questions so as to develop the skill of imposing assumptions among the learners 4- Determine the discovery activities or experiments that the learners will carry out.			
	5- Evaluate learners and help them apply what they have learned in situations			

Student Workload (SWL) الحمل الدراسي للطالب محسوب لـ ١٥ أسبوعا					
Structured SWL (h/sem) الحمل الدراسي المنتظم للطالب خلال الفصل	63	Structured SWL (h/w) الحمل الدراسي المنتظم للطالب أسبوعيا	4		
Unstructured SWL (h/sem) الحمل الدراسي غير المنتظم للطالب خلال الفصل	87	Unstructured SWL (h/w) الحمل الدر اسى غير المنتظم للطالب أسبوعيا	6		
Total SWL (h/sem) الحمل الدراسي الكلي للطالب خلال الفصل		150			

Module Evaluation

تقييم المادة الدراسية

		Time/Number	Weight (Marks)	Week Due	Relevant Learning Outcome
Formative	Quizzes	3	15% (15)	4-6-10	LO #1, #2 and #7, #8
assessment	Assignments	3	15 (15)	3-5-12	LO #3, #4 and #5, #6, #8
التقييم التكويني	Projects / Lab.				
	Report	1	10% (10)	13	LO #5, #7 and #8
Summative assessment	Midterm Exam	2hr	10% (10)	7	LO #1 - #8
التقييم التلخيصي	Final Exam	3hr	50% (50)	16	All
Total assessment			100% (100 Marks)		

Delivery Plan (Weekly Syllabus)

	المنهاج الاسبوعي النظري
	Material Covered
Week 1	Introduction unconstrained Optimization
Week 2	Unconstrained Optimization in one dimension (necessary and sufficient conditions)
Week 3	Unconstrained Optimization in one dimension (necessary and sufficient conditions)
Week 4	Classification matrices
Week 5	Classification matrices

Convexity of optimization and basic properties.

Rate of convergence

Week 6

Week 7

Week 8	Mid-term Exam
Week 9	Methods of one dimension: Bisection method
Week 10	Newton's method
Week 11	Golden section method
Week 12	Fibonacci method.
Week 13	Lagrange method with examples for maxmine function.
Week 14	Kuhn –Tucker condition with examples for minima function.
Week 15	Methods of multi dimension: Steepest descent method
Week 16	Preparatory week before the final Exam
	Delivery Plan (Weekly Lab. Syllabus)
	المنهاج الاسبوعي للمختبر
	Material Covered
Week 1	
Week 2	
Week 3	
Week 4	
Week 5	
Week 6	
Week 7	

Learning and	Teaching	Resources
---------------------	-----------------	-----------

مصادر التعلم والتدريس

	Text	Available in the Library?
Required Texts النصوص المطلوبة	Numerical optimization methods, Basim A. Hassan, (2024) Engineering Optimization Theory and Practice, Fourth Edition, Singiresu S. Rao, (2009)	Yes
Recommended		
Texts		
Websites		

	Grading Scheme				
		الدرجات	مخطط		
Group	Grade	التقدير	Marks %	Definition	
	A - Excellent	امتياز	90 - 100	أداء مذهلOutstanding Performance	
	B - Very Good	جيد جدا	80 - 89	Above average with some errors فوق المتوسط مع بعض الأخطاء	
Success Group	C - Good	Sound work with notable errors جيد 70 - 79 العمل السليم مع أخطاء ملحوظة			
(50 - 100)	D - Satisfactory	منوسط	60 - 69	Fair but with major shortcomings عادل ولكن مع نواقص كبيرة	
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria العمل يلبي الحد الأدنى من المعابير	
Fail Group	FX — Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded مطلوب المزيد من العمل ولكن الائتمان الممنوح	
(0 – 49)	F – Fail	ر اسب	(0-44)	Considerable amount of work required قدر كبير من العمل المطلوب	

Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.

Update:

Some methods to solve a Non-linear Programming Problem; Lagrange multipliers Kuhn-Tucker conditions in view of the requirements of thelabor market

Update:

Some methods to solve a Non-linear Programming Problem; Lagrange multipliers Kuhn-Tucker conditions

_	ourse l	Name:								
Function	analys	is1/ The fourth stage	,							
2. C	lourse (Code:								
CM MS 21	1 F 441									
3. S	emeste	er / Year:								
2024-202		2 / 20021								
4. D	escrint)	tion Preparation Da	ite:							
1/10//202		.ion i reparation ba								
5. A	vailabl	e Attendance Forms:	•							
		classroom according to		nced weekly c	lass schedule					
		of Credit Hours (To								
Four the	oretical	lessons per week / 3	3 units							
7 (`oursa	administrator's nar	ma (mar	ntion all if r	nore than one	nama)				
		MED AMER	ne (mei	mon an, n i		s riarrie)				
Email:	M.AIII	VILD AWIEK								
:aahmed	lamer									
68@uon										
edu.iq										
	ourse C	bjectives								
Course C	Objective	s		• Students	will.study a ne					
					•	• Students will study a new spaces, its				
				properties and different type of						
	9. Teaching and Learning Strategies					•				
9. T	eaching	and Learning Strateg	gies	operators		•				
9. To		and Learning Strated				•				
	Ve	ctor, normed and Ba	nach spa	aces		•				
	Ve		nach spa	aces		•				
	Ve	ctor, normed and Ba	nach spa	aces		•				
	Ve Lin	etor, normed and Ba	nach spa	aces		•				
Strategy	Ve Lin	etor, normed and Ba	nach spa	aces s operators	Learning	•				

1	۲	My presence in the classroom and through the educational tools available inside the classroom, with some site visits	Definition, Examples and some properties of vector spaces	methods of evaluating and analyzing the types of roads found in the urban and rural road network and how to	such as daily preparation, daily, oral,
۲	۲	My presence in the classroom and through the educational tools available inside the classroom, with some site visits	Linear combination, span set, linearly independence, finite and infinite dimension,	their capacity and level of service.	
٣	۲	My presence in the classroom and through the educational tools available inside the classroom, with some site visits	Definition, sum and intersection of subspace, direct summand		
٤	۲	My presence in the classroom and through the educational tools available inside the classroom, with some site visits	Definition, Minkowski's inquality, Cauchy Schwartz inequality, some properties of normed spaces		
٥	۲	My presence in the classroom and through the educational tools available inside the classroom, with some site visits	Metric space, convergent sequence and Cauchy sequence		
6	2	My presence in the classroom and through the educational tools available inside the classroom, with some site visits	Definition, The space C[a,b]		

٧	۲	My presence in the classroom and through the educational tools available inside the classroom, with some site visits	Open and Closed set, subspace of Banach space	
٨	۲	My presence in the classroom and through the educational tools available inside the classroom, with some site visits	Domain, Range of the operator, Null space, differentiation operator, integration operator	
٩	۲	My presence in the classroom and through the educational tools available inside the classroom, with some site visits	Definition,composite of two operators	
١.	۲	My presence in the classroom and through the educational tools available inside the classroom, with some site visits	Definition, sylvester's law	
11	۲	My presence in the classroom and through the educational tools available inside the classroom, with some site visits	Definition, Finite	
١٢	۲	My presence in the classroom and through the educational tools available inside the classroom, with some site visits	Definition, continuity and boundedness Theorem	
١٣	۲	My presence in the classroom and through the educational tools available inside the classroom, with some site visits	Definition of functional, linear functional, examples	

١٤	۲	My presence in the classroom and through the educational tools available inside the classroom, with some site visits	Definition,Theorem	
15			Definition and some examples	

11. Course Evaluation							
Distributing the score out of 100 according to the tasks assigned to the student such as daily preparation, daily oral, monthly, or written exams, reports etc							
12. Learning and Teaching Resource	s						
Required textbooks (curricular books, if any)							
Main references (sources)							
Recommended books and reference	6						
(scientific journals, reports)							
Electronic References, Websites							
	-						

10. Co	Hours	Required Learning Outcomes	Unit or s	subject	Learning method	Evaluation method
		Deguired Learning	Unit or o	uhioot	Loorning	Evaluation
10. Course Structure						
		erator	anorial Off	ттыст зра	ccs, rinbert au	ijonit
Strategy		er product space, H presentation of func	•		-	
		and Learning Strate		المار ما		
0				properties ar	nd different type	of operators
Course	Objective	s		• Students w	rill study a new s	paces, its
8. 0	Course C	bjectives				
edu.iq	nosui.					
: <u>aahme</u> 68@uoi						
Email:						
		MED AMER	,	·		•
7. (Course	administrator's na	me (mer	ntion all, if r	nore than one	e name)
Four the	eoretical	lessons per week / 3	3 units			
6. I	Number	of Credit Hours (To	tal) / Nur	nber of Unit	ts (Total)	
		classroom according to		nced weekly c	lass schedule	
5 /	Availabl	e Attendance Forms	•			
1/10//20			100.			
4. 1	Descrin	tion Preparation Da	ate.			
2024-20		1 / 1 Car.				
3. (Semeste	er / Year:				
CM MS 2						
2. (Course (Code:				
	n anaiys	is2/ The fourth stage	2			
	n anaiys	182/ The fourth stage	2			

1	۲	Definition and some examples	Definition, Examples and some properties of vector spaces	methods of evaluating and analyzing the types of roads found in the urban and rural road network and how to	such as daily preparation, daily, oral,
۲	۲	Definition and some examples	Linear combination, span set, linearly independence, finite and infinite dimension,	their capacity and level of service.	
٣	۲	Some theorem and proposition	Definition, sum and intersection of subspace, direct summand		
٤	۲	Schwarz inequality, parallelogram equality polarization identity	Definition, Minkowski's inquality, Cauchy Schwartz inequality, some properties of normed spaces		
٥	۲	Theorem and Examples	Metric space, convergent sequence and Cauchy sequence		
6	2	Orthogonal element to element Orthogonal element to set Orthogonal set to set	Definition, The space C[a,b]		

٧	۲	Definition, examples, theorem	Open and Closed set, subspace of Banach space	
٨	۲	Definition, examples, Gram-schmidt process	Domain, Range of the operator, Null space, differentiation operator, integration operator	
٩	۲	Theorem and Examples	Definition , composite of two operators	
١.	۲	Definition, examples,	Definition, sylvester's law	
11	۲	Theorem and Examples	Definition, Finite dimension Theorem	
١٢	۲	Definition, examples,	Definition, continuity and boundedness Theorem	
١٣	۲	Theorem and Examples	Definition of functional, linear functional, examples	

١٤	۲ ا	Self adjoint,Unitary ,Normal operators	Definition,Theorem	
15	2		Definition and some examples	

11. Course Evaluation							
Daily attendance and preparation = 3 marks. Daily homework and exam = 5 marks. Reports = 2 marks. Monthly exams = 30 marks. Final exam = 60 marks.							
12. Learning and Teaching Reso	urces						
Required textbooks (curricular books, if a	ıny)						
Main references (sources)							
Recommended books and refere	Recommended books and references						
(scientific journals, reports)							
Electronic References, Websites							
	<u>'</u>						

Course Description Form

University: Mosul College: Computer Science and Mathematics Department: Mathematics

1. Course name and	1. Course name and academic level				
Mathematical Transfo	Mathematical Transforms / 4 th Class				
2. Course Code:					
CM MS 25 F 437					
3. Semester / Year:					
First Semester 2024-2	025				
4. Description Prepa	ration Date:				
18/09/2024					
5. Available Attenda	ince Forms:				
Attendance in the class	sroom according	g to the announced weekly class schedule.			
6. Number of Credit	t Hours (Total)	/ Number of Units (Total)			
4 Hours of theory per	week / 3 units				
7. Course administr	ator's name (m	ention all, if more than one name)			
Dr. Waleed Mohammed	•	waleedalhayani@uomosul.edu.iq			
Dr. Mohammed Omar A	Al-Amr	alamr@uomosul.edu.iq			
8. Course objectives					
Course Objectives	mathematical 2. Introducing transformatio 3. Simplifying transformatio 4. Strengthening definitions rel 5. Training stud equations. 6. Highlighting	students' problem-solving skills through transformation techniques. students to the wide applications of ms in various scientific fields. solutions to complex problems using methods. g fundamental understanding of concepts and lated to mathematical transformations. ents to use transformations in solving differential the importance of transformation methods as a matical tool for scientists and researchers.			
9. Teaching and Le	9. Teaching and Learning Strategies				
Interactive Lectures	Explaining funda practical example	imental concepts of mathematical transforms with			
Problem-Based		ld problems using mathematical transforms			
Learning (PBL)					
Collaborative Learning	Group work to transforms	solve complex problems using mathematical			

Continuous	Periodic quizzes, weekly assignments, and comprehensive final
Assessment	examination

10. Course Structure

Week	Hours	Required learning outcomes	Unit or subject name	Learning method	Evaluation method
1	4	u	Introduction and definitions, Kernal, Definition of Laplace integral		ily,
2	4	ions i	Laplace transformation, Properties, Theorems, Examples		on, da
3	4	plicat	Laplace Transform of derivatives and integrals, Theorems		paratic
4	4	me ap ıls.	Inverse transform of Laplace, Method of evaluating inverse		y prej
5	4	and so ntegra	Convolution theorem, Properties, Examples		as dail ms.
6	4	ies, a	Step, Impulse and periodic functions,	тос	uch a
7	4	perti	Mid-term Exam + solving exercises	assr	nt, sı itten
8	4	pro uatic	Fourier series, Definitions, Properties	ne cl	hude d wr
9	4	n, its ıl eq	Using Properties of sine and cosine	in th	he si y anc
10	4	Laplace transform, its properties, and some solving differential equations and integrals	Evaluation of Fourier coefficients, Properties, Examples	Presence in the classroom	assigned to the student, such as coral, monthly and written exams
11	4	ice tra g diff	Even and Odd functions, Definitions, principles, Examples	Pre	assign oral, m
12	4	Lapla	Complex form of the Fourier series, Definitions, Examples		asks a
13	4	ut the	Z-Transformation, Definitions, Theorems, properties		o the t
14	4	Learn about the Laplace transform, its properties, and some applications in solving differential equations and integrals.	Properties of Z-transform, Theorems, Examples		ding to
15	4	Lear	Inverse of Z-transform, Definitions, methods, applications		According to the tasks assigned to the student, such as daily preparation, daily, oral, monthly and written exams.

11. Course Evaluation and Grade Distribution

Midterm exam = 30 Degrees. Attendance and preparation = 5 Degrees.

Daily exam = 5 Degrees. Final exam = 60 Degrees.

12. Learning and Teaching Resources

Required textbooks (methodology books if any)	Indeterminate
Main References (Sources)	• Ladis, D Kovach, Advance Engineering Mathematics, 5 th Edition, Addison Wesley Publishing Com., 2011.

Recommended supporting books and references (scientific journals, reports)	 Gupta, Parmanand. Topics in Laplace and Fourier transforms. Laxmi Publications Pvt Limited, 2019. Zill, Dennis G., and Michael R. Cullen. Differential equations with boundary-value problems. 7th Edition. Cengage Learning, 2008. Spiegel, Murray R. Schaum's Outline of Laplace Transforms. McGraw Hill Professional, 1965.
Electronic References, Websites	Indeterminate
Curriculum or description update rate	10%

Lecturer Coordinator Assist. Prof. Dr. Waleed Mohammed Al-Hayani Head of the Department Prof. Dr. Abdulghafor Jassim Salim

1. Course Name:			
Cryptography			
2. Course Code:			
CMMS24F456			
3. Semester / Year:			
2023-2024			
4. Description Preparation Date:			
1/9/2023			
5. Available Attendance Forms:			
In classroom of mathematical department			
6. Number of Credit Hours (Total) / Number	mber of Units (Tot	tal)	
4 hours in every week/ 3 units			
7. Course administrator's name (mer	ntion all, if more t	than one	e name)
Name: Dr. Ban Ahmed Hasan Mitras			
Emoil			
Email: banah.mitras@uomosul.edu.iq			
8. Course Objectives			
Course Objectives	* Recognize on c	ryptogra	phy and its
	algorithms.		
	*Study of classic	al encryp	otion
	algorithms.		
	* Study of moderalgorithms.	rn encryp	otion
9. Teaching and Learning Strategies	argoriums.		
Strategy			
Methods and algorithms of mod	lern and classical of	cryptogra	phy
10. Course Structure			
Hours Required Learning			Evaluation

Week		Outcomes	Unit o	r subject		Learning	method
			name			method	
1	4		Genera	al definitions			
2	4		Transp Algorit	osition Encrypt hm	;		
3	4			ransposition (zi ti zig-zag, horizo			
4	4			wise, anti-clock, al route			
5	4			column osition algorithi	m		
6	4			eral Transposition			
7	4			ution Cipher			
8	4			Additive) Cipho	er		
9	4			licative Cipher			
10	4			Affine Cipher Algorithm			
11	4			Stream –modern Encrypt Algorithms			
12	4		Encryp ASCCI	t Algorithms by code	7		
13	4		Mather cryptog	natical models t graphy	:0		
14	4			Cipher Algorith	ım		
15	4		Beal's l	nomophonic cipi nm	her		
ranspo	sition E	ncrypt Algorithm	1				
11. (Course I	Evaluation					
Daily=	10; month	ly=30; finally=60					
12. I	_earning	and Teaching Re	sources				
Require	d textbool	ks (curricular books,	if any)				
Main ref Recomr	ferences (· /	ferences	•	tion b	y Alaa A	tion security l-Hamamy &

(scientific journals, reports...)

Electronic References, Websites

،(2013).

Saad Al-AAni, (2007)2-التشفير وامن المعلومات تاليف علي محمد دهب رحمة

University: Mosul

Department or Branch: Mathematics

College: Computer Science and Mathematics

1. Course Name / Class

Graph Theory / 4th Class

2. Course Code:

CMMS 25_F4031

3. Semester / Year:

2nd Semester / 2024 - 2025

4. Description Preparation Date:

1/9/2024

5. Available Attendance Forms:

Classroom according to the announced weekly lesson schedule

6. Number of Credit Hours (Total) / Number of Units (Total)

4 hours per week / 3 units

7. Course administrator's name (mention all, if more than one name)

Name: Dr. Raghad A. Mustafa
Lecturer: Asmaa S. Aziz
Email: raghad.math@uomosul.com
smaas982@uomosul.edu.iq

8. Course Objective

Course Objective

Identification of graph, directed graph and some special graph. Tracks, paths, and circuits, connected graph, distance in the graph and on the tree, planner graph, and graph immersion are also identified. genus, thickness, number of intersections, and some related results and theorems are identified.

9. Teaching and Learning Strategies

Strategy

The main strategy that will be adopted in delivering this module is to encourage students' participation in the exercises, while at the same time refining and expanding their critical thinking skills. This will be achieved through classes, interactive tutorials and by considering type of simple experiments involving some sampling activities that are interesting to the students. And knowing the basis of the concepts and where they came from and taking realistic applications on that

10. Course Structure

Week	Hours	Required Learning Outcomes	Unit or Subject Name	Learning Method	Evaluation Method
1	4	Understand the basic concepts of graph theory.	Introduction to the theory of graphs and its importance to other sciences	The course will be delivered through in-person lectures held in the Mathematics tment classroom, supplemented by online activities, resources, and assignments provided via the Google Classroom platform.	e evaluated based on their performance in assigned tasks, including daily ipation in daily and oral assessments, monthly and written examinations, and the submission of reports.
2	4	basic gr	Basic Concepts in Graph theory.	the N , and a	sks, inc ten ex nissior
3	4	ind the	Directed graphs with some special graphs	held in ources ogle Cla	ned tas nd writ ne subr
4	4	ndersta	Connected and distance in graph	ctures es, res he Goc	n assign hthly ar and th
5	4	'n	Trees and forest with some theorems	son le activiti d via t	ance ii s, mor
6	4	aph Ids.	Planner graph	n-pel Iline ovide	form
7	4	oply gra	Closed and oriented surfaces	ough ii d by or pro	eir per assessi
8	4	to ag	Mid-Exam	d thr ente	on th oral
9	4	The ability to apply graph theory in different fields.	Thickness, genus and number of crosses	lelivere Ipplem	based (ily and
10	4	The	Kurtovsky's theorem and some theorems	rill be d om, su	uated n in da
11	4	help cel in ificial stical other ields.	Eid al-Fitr	rse w assro	eval
12	4	kills last sexce artifation artifation of ortifation of sext sext artists and of sext sext file.	graph coloring	coul	vill be articiț
13	4	These skills help students excel in computing, artificial intelligence, statistical analysis, and other related fields.	Some applications of graph theory	The cou Department c	Students will bo preparation, partici
14	4	st com tellig	Review	Deķ	Stuc
15	4	<u>.</u> ⊆	Final-Exam		pre

11. Course Evaluation

Daily exams: 10 points, Monthly exams: 30 points, Final exam: 60 points

12. Learning and Teaching Resources

Required textbooks (curricular books, if any)

على عزيز علي ، " مقدمة في نظرية البيان " وزارة التعليم العالي والبحث العلمي ، الجمهورية العراقي جامعة الموصل 1983.

Main references (sources)	Chartrand, G. and Lesniak, L.; (2016). Graphs and Digraphs,6th ed.,Wadsworth and Brooks/Cole, California
Recommended books and references (scientific journals, reports,)	[1].Bondy, J.A. and Murty, U.S.R.; (2008). Graph Theory, Library of Congress Control Number: 2007940370. [2].Diestel, R (2005). Graph Theory, Springer – Verlag Heidelberg, New York 2005. [3].Douglas, B. W.; (2002). Introduction in Graph Theory, printed in India by Rashtriya printers. [4].Fournier, J.C.; (2009). Graph Theory and Applications, John Wiley & Sons, Inc. 111 River Street. USA.
Electronic References, Websites	https://en.wikipedia.org/wiki/Graph_theory
Curriculum or description update rate	10 %

Instructor

Name and Signature of the Course Name and Signature of the Head of **Department of Branch**

Dr. Raghad Abdulazeez Mustafa

Prof. Dr. Abdulghafoor J. Salim

University: Mosul

College: Computer Science and Mathematics

Department or Branch: Mathematics

1. Course Name / Class

Dynamical Systems / 4th Class

2. Course Code:

CM MS 24 F 466

3. Semester / Year:

1st Semester / 2023 - 2024

4. Description Preparation Date:

18 / 09 / 2024

5. Available Attendance Forms:

Classroom according to the announced weekly lesson schedule, electronically on Google Classroom platform.

6. Number of Credit Hours (Total) / Number of Units (Total)

4 hours per week / 3 units

7. Course administrator's name (mention all, if more than one name)

Name: Dr. Salma Muslih Faris

Email: salma_muslih67@uomosul.edu.iq

8. Course Objectives

Develop the theory of iterative problem-solving and understand the fundamental ideas of dynamical systems.

Course Objectives

Understand iterations, fixed points, and periodic points.

Study the basic concepts of dynamical systems.

- Explore fundamental theories such as bifurcation theory and chaos theory.

- Study dynamical systems in Euclidean and complex settings.

Examine advanced types of chaos (e.g., expanding functions).

9. Teaching and Learning Strategies

Strategy

Type something like: The main strategy that will be adopted in delivering this module is to encourage students' participation in the exercises, while at the same time refining and expanding their critical thinking skills. This will be achieved through classes, interactive tutorials and by considering type of simple experiments involving some sampling activities that are interesting to the students.

10. Course Structure

Week	Hours	Required Learning Outcomes	Unit or Subject Name	Learning Method	Evaluation Method
1	4	ts of dynami ts, periodic p ng; explore S sitivity; and a ted to these	Basic Definition of Dynamical Systems (DS): Fixed points, periodic points, orbits, attraction, and repelling.	ectures held in the Mathematics Department classroom, supplemented by online activities, assignments provided via the Google Classroom platform.	erformance in assigned tasks, including daily preparation, participation in daily and oral ithly and written examinations, and the submission of reports.
2	4		Study of some examples in DS with special families.		
3	4	stand the band the band the band the band tatraction, y, and topololes and the pts.	Definitions of SDIC (Sensitive Dependence on Initial Conditions), density, and topological transitivity.	oom, supple atform.	ation, partii of reports.
4	4	Understa systems, orbits, att density, a examples concepts.	Examples and theorems related to the above concepts.	it classr oom pla	prepar nission
5	4	of Le-	Definition of Bifurcation.	tmen lassr	daily subn
6	4	Understand the concept of bifurcation, identify and distinguish between saddlenode, pitchfork, and Hopf bifurcations, and analyze examples illustrating each type.	Study of types of bifurcation: saddle-node / pitchfork bifurcation.	ectures held in the Mathematics Department classroom, s assignments provided via the Google Classroom platform	d based on their performance in assigned tasks, including daily preparation, parl assessments, monthly and written examinations, and the submission of reports.
7	4		Pitchfork bifurcation and Hopf bifurcation.		
8	4	Under bifur disting node bifur exam	Examples for all the mentioned types of bifurcation.	in the N provid	n assigr :ten exa
9	4	tion ey as aps, ic the n	Definition of Chaos.	held nents	ince i I writ
10	4	e definition ognize key es such as I tent maps, er chaotic explain the between nd chaos.	The most famous chaotic families: logistic map, tent map, etc.	ectures assignn	erforma thly and
11	4	nd the amilling amilling of the amilling and and ship on all	Other chaotic functions.	_ ~	
12	4	Understand the definition of chaos, recognize key chaotic families such as the logistic and tent maps, explore other chaotic functions, and explain the relationship between bifurcation and chaos.	The relationship between bifurcation and chaos.	ough in-person resources, and	based on th
13	4	rstems lidean lex lex ruding lud of	Dynamical systems on high- dimensional Euclidean spaces.	red thro	luated k
14	4	Understand dynamical systems in high-dimensional Euclidean spaces, analyze complex dynamical systems including Julia and Fatou sets, and explore the behavior of expanding functions.	Complex dynamical systems (Julia sets and Fatou sets).	The course will be delivered through in-person resources, and	Students will be evaluated based on their p assessments, mor
15	4	Understand in high-dime spaces, a dynamical sullia and explore texpand	Expanding functions.		Student
11	11 Course Evaluation				

11. Course Evaluation

Daily attendance and preparation: 2.5 points , Homework: 2.5 points Daily exams: 5 points , Monthly exams: 30 points , Final exam: 60 points

12. Learning and Teaching Resources		
Required textbooks (curricular books, if any)	Introduction to Chaotic dynamical Systems. R.L. Devaney	
Main references (sources)	Encountered with Chaos, Gulic.	
Recommended books and references (scientific journals, reports,)		
Electronic References, Websites		
Curriculum or description update rate	10 %	

Name and Signature of the Course Instructor

Name and Signature of the Head of Department or Branch

Dr. Salma M. Faris

Prof. Dr. Abdulghafoor Jasim Salim