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Operating System
Operating System
An operating system is software that manages a computer’s hardware. It also
provides a basis for application programs and acts as an intermediary between the
computer user and the computer hardware. Operating systems are everywhere,
from cars and home appliances that include “Internet of Things” devices, to smart
phones, personal computers, enterprise computers, and cloud computing
environments.
A fundamental responsibility of an operating system is to allocate the resources
such as CPU, memory, and 1/O devices, as well as storage to programs.
Because an operating system is large and complex, it must be created piece by
piece. Each of these pieces should be a well-delineated portion of the system,
with carefully defined inputs, outputs, and functions.
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What Operating Systems Do?

A computer system can be divided roughly into four components: the hardware,
the operating system, the application programs, and a user (Figure 1). The
operating system controls the hardware and coordinates its use among the various
application programs for the various users.
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(compilers, web browsers, development kits, etc.)
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operating system

! ! !

computer hardware
(CPU, memory, /0O devices, etc.)

Figure 1: Abstract view of the components of a computer system



The operating system provides the means for proper use of these resources in the
operation of the computer system. It simply provides an environment within
which other programs can do useful work. We can explore operating system’s
role, From two viewpoints: that of the user and that of the system.
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1. User View

The user’s view of the computer varies according to the interface being used

(monitor, keyboard, mouse, touch screen, and voice recognition).

In this case, the operating system is designed mostly for ease of use, with some

attention paid to performance and security and none paid to resource

utilization—how various hardware and software resources are shared.
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2. System View
From the computer’s point of view, an operating system can be viewed as a
resource allocator. A computer system has many resources that may be required
to solve a problem: CPU time, memory space, storage space, 1/O devices, and so
on. The operating system acts as the manager of these resources by allocating
them to specific programs and users so that it can operate the computer system
efficiently and fairly. It also can be viewed as control program that manages the
execution of user programs to prevent errors and improper use of the computer.
It is especially concerned with the operation and control of I/O devices.
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Operating-System Operations

For a computer to start running it needs to have an initial or bootstrap program to
run. A bootstrap program, tends to be simple. Typically, it is stored within the
computer hardware in firmware. It initializes all aspects of the system, from CPU



registers to device controllers to memory contents. The bootstrap program must
know where to locate the operating-system kernel and how to load it into memory.
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Once the kernel is loaded and executing, it can start providing services to the
system and its users. Once this phase is complete, the system is fully booted, and
the system waits for some event to occur.
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Multiprogramming and Multitasking

One of the most important aspects of operating systems is the ability to run
multiple programs. Multiprogramming increases CPU utilization, as well as
keeping users satisfied, by organizing programs so that the CPU always has one
to execute. In a multiprogrammed system, a program in execution is termed a
process.
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The idea is as follows: The operating system keeps several processes in memory
simultaneously (Figure 2). The operating system picks and begins to execute one
of these processes. Eventually, the process may have to wait for some task, such
as an 1/O operation, to complete. In a non-multiprogrammed system, the CPU
would sit idle. In a multiprogrammed system, the operating system simply
switches to, and executes, another process. When that process needs to wait, the
CPU switches to another process, and so on. Eventually, the first process finishes
waiting and gets the CPU back. As long as at least one process needs to execute,
the CPU is never idle.
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Multitasking is a logical extension of multiprogramming. In multitasking
systems, the CPU executes multiple processes by switching among them, but the
switches occur frequently, providing the user with a fast response time.
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Figure 2: Memory layout for a multiprogramming system

When a process executes, it typically executes for only a short time before it either
finishes or needs to perform I/O. Since interactive /O typically runs at “people
speeds,” it may take a long time to complete. Rather than let the CPU sit idle as
this interactive input takes place, the operating system will rapidly switch the
CPU to another process.

If several processes are ready to run at the same time, the system must choose
which process will run next. Making this decision is CPU scheduling. Finally,
running multiple processes concurrently requires that their ability to affect one
another be limited in all phases of the operating system, including process
scheduling, disk storage, and memory management.
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Resource Management

As an operating system is a resource manager. The system’s CPU, memory space,
file-storage space, and 1/O devices are among the resources that the operating
system must manage.
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1. Process Management

A program can do nothing unless its instructions are executed by a CPU. A
program in execution, is a process. A programs such as a compiler, a word-
processing program, and a social media app on a mobile device are processes. A
process needs certain resources—including CPU time, memory, files, and 1/O
devices—to accomplish its task. These resources are typically allocated to the
process while it is running. A single-threaded process has one program counter
specifying the next instruction to execute. Thus, although two processes may be
associated with the same program, they are nevertheless considered two separate
execution sequences. A process is the unit of work in a system. A system consists
of a collection of processes, some of which are operating-system processes (those
that execute system code) and the rest of which are user processes (those that
execute user code).
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The operating system is responsible for the following activities in connection with
process management:

» Creating and deleting both user and system processes
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« Scheduling processes and threads on the CPUs
* Suspending and resuming processes
* Providing mechanisms for process synchronization
* Providing mechanisms for process communication
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2. Memory Management

Main memory is a large array of bytes, ranging in size from hundreds of
thousands to billions. The main memory is generally the only large storage device
that the CPU is able to address and access directly. To improve both the utilization
of the CPU and the speed of the computer’s response to its users, general-purpose
computers must keep several programs in memory, creating a need for memory
management. In selecting a memory-management scheme for a specific system,
we must take into account many factors—especially the hardware design of the
system. Each algorithm requires its own hardware support.
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The operating system is responsible for the following activities in connection with
memory management:

» Keeping track of which parts of memory are currently being used and
which process is using them
« Allocating and deallocating memory space as needed
* Deciding which processes (or parts of processes) and data to move into
and out of memory
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3. File-System Management

Computers can store information on several different types of physical media.
Secondary storage is the most common, but tertiary storage is also possible. Each
of these media has its own characteristics and physical organization. Most are
controlled by a device, that also has its own unique characteristics. These
properties include access speed, capacity, data-transfer rate, and access method
(sequential or random). A file is a collection of related information defined by its
creator. Commonly, files represent programs (both source and object forms) and
data. files are normally organized into directories to make them easier to use.
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The operating system is responsible for the following activities in connection
with file management:

* Creating and deleting files
* Creating and deleting directories to organize files
* Supporting primitives for manipulating files and directories
* Mapping files onto mass storage
« Backing up files on stable (nonvolatile) storage media
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4. Mass-Storage Management

As we have already seen, the computer system must provide secondary storage
to back up main memory. Most modern computer systems use HDDs and NVM
devices as the principal on-line storage media for both programs and data.
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The operating system is responsible for the following activities in connection
with secondary storage management:

* Mounting and unmounting
* Free-space management
* Storage allocation
» Disk scheduling
* Partitioning
* Protection
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At the same time, there are many uses for storage that is slower and lower in cost
(and sometimes higher in capacity) than secondary storage. Examples of these
storage devices are magnetic tape drives and their tapes and CD DVD and Blu-
ray drives and platters.
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5. Cache Management
Caching is an important principle of computer systems. Here’s how it works.
Information is normally kept in some storage system (such as main memory). As
it is used, it is copied into a faster storage system—the cache—on a temporary
basis. When we need a particular piece of information, we first check whether it
Is in the cache. If it is, we use the information directly from the cache. If it is not,
we use the information from the source, putting a copy in the cache under the
assumption that we will need it again soon. Because caches have limited size,
cache management is an important design problem. Careful selection of the
cache size and of a replacement policy can result in greatly increased
performance.
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Figure 3: Migration of integer A form disk to register

Virtualization

Virtualization is a technology that allows us to abstract the hardware of a single
computer (the CPU, memory, disk drives, network interface cards, and so forth)
into several different execution environments, thereby creating the illusion that
each separate environment is running on its own private computer.

These environments can be viewed as different individual operating systems (for
example, Windows and UNIX) that may be running at the same time and may
interact with each other. A user of a virtual machine can switch among the
various operating systems in the same way a user can switch among the various
processes running concurrently in a single operating system. On laptops and
desktops, a VMM allows the user to install multiple operating systems for



exploration or to run applications written for operating systems other than the
native host.
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Distributed Systems
A distributed system is a collection of physically separate, possibly
heterogeneous computer systems that are networked to provide users with access
to the various resources that the system maintains. Access to a shared resource
Increases computation speed, functionality, data availability, and reliability.
Some operating systems generalize network access as a form of file access, with
the details of networking contained in the network interface’s device driver.
A network operating system is an operating system that provides features such
as file sharing across the network, along with a communication scheme that
allows different processes on different computers to exchange messages.
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Linkers and Loaders
Usually, a program resides on disk as a binary executable file—for example,
a.out or prog.exe. To run on a CPU, the program must be brought into memory
and placed in the context of a process. Source files are compiled into object files
that are designed to be loaded into any physical memory location, a format known
as an relocatable object file . Next, the linker combines these relocatable object
files into a single binary executable file. During the linking phase, other object
files or libraries may be included as well, such as the standard C or math library
(specifiedwith the flag -Im).
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A loader is used to load the binary executable file into memory, where it is
eligible to run on a CPU core. An activity associated with linking and loading
Is relocation, which assigns final addresses to the program parts and adjusts code
and data in the program to match those addresses. When the icon associated with
the executable file is double-clicked, the loader is invoked and then it loads the
specified program into memory using the address space of the newly created
process.
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Figure 4: The role of linker and loader
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The process described thus far assumes that all libraries are linked into the
executable file and loaded into memory. In reality, most systems allow a program
to dynamically link libraries as the program is loaded. Windows, for instance,
supports dynamically linked libraries (DLLS). In this approach the library is
conditionally linked and is loaded if it is required during program run time.
Obiject files and executable files typically have standard formats that include the
compiled machine code and a symbol table containing metadata about functions
and variables that are referenced in the program. For UNIX and Linux systems,
this standard format is known as ELF (for Executable and Linkable Format).
Windows systems use the Portable Executable (PE) format, and macOS uses the
Mach-O format.
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Processes
The Process
As mentioned earlier, a process is a program in execution. The status of the
current activity of a process is represented by the value of the program counter
and the contents of the processor’s registers. The memory layout of a process is
typically divided into multiple sections, and is shown in Figure 1. These
sections include:
e Text section—the executable code
e Data section—global variables
e Heap section—memory that is dynamically allocated during program run
time
e Stack section—temporary data storage when invoking functions (such as
function parameters, return addresses, and local variables)

Although the stack and heap sections grow toward one another, the operating
system must ensure they do not overlap one another.

max

stack

heap

data

text

0

Figure 1: Layout of a process in memory
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(el &l yaziall

Although two processes may be associated with the same program, they are
nevertheless considered two separate execution sequences. For instance, several
users may be running different copies of the mail program, or the same user may
invoke many copies of the web browser program. Each of these is a separate
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process; and although the text sections are equivalent, the data, heap, and stack

sections vary.
35 Ll () iy Lagdl V) ¢ 4usdi zali yally processes - (e ol Jag i 28 il (e a2 Ml e
¢ ) el (e Adlidie ot Jaanily (paddional) (pe paadl o gty 3 ¢ JU Jans e Galiadia
Process & o3 (o JS L sll (i yaiise gali y (e Bae Frud el dinly adiiuall (udi o 68 28
s heap s data ) aludl Calias 43l Y1 ¢ Lo & (il oLl Gl (e a2 ) e g ¢ dliadia
.Stack

Process State
As a process executes, it changes state. The state of a process is defined in part
by the current activity of that process. A process may be in one of the following
states:
e New. The process is being created.
Running. Instructions are being executed.
Waiting. The process is waiting for some event to occur (such as an 1/0
completion or reception of a signal).
Ready. The process is waiting to be assigned to a processor.
process J) Alla yaadah Alla Al e i Lgilla 08 ¢ process JI s oLl
YW saa) A process A o sS5 3 processd) @il sl Ll JMA (e B e
Al
. process J ¢l 2 . News
Sladaill 285 23 Runninge
TV AL Ay Jie) Glaall (ans Eisaa process ) is Waitinge
(3L Juin) i JleSin)
el anads S5 ) process ) ks Readys

admitted interrupt

N
terminated )
//

Gnning

scheduler dispatch

I/O or event completion I/O or event wait

waiting

Figure 2: Diagram of process state
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Process Control Block
Each process is represented in the operating system by a process control block
(PCB)—also called a task control block. A PCB is shown in Figure 3. It contains
many pieces of information associated with a specific process, including these:
aSaill A )l Lawi(PCB) doleadl 8 aSaill AHS Al g Jroill) albas 8 dilee JS Jiiad oy
process— ik yall Cilaslaall (pe paall e (g 5iny5 3 JSA APCB ) Jedai algall
el Ly ¢ Apaa
Process state. The state may be new, ready, running, waiting, halted, and so on.
Program counter. The counter indicates the address of the next instruction to
be executed for this process.

process state

process number

program counter

registers

memory limits

list of open files

Figure 3: Process Control Block(PCB)

CPU registers. The registers vary in number and type, depending on the computer
architecture. They include accumulators, index registers, stack pointers, and
general-purpose registers, plus any condition-code information. Along with the
program counter, this state information must be saved when an interrupt occurs,
to allow the process to be continued correctly afterward when it is rescheduled to
run.

CPU-scheduling information. This information includes a process priority,
pointers to scheduling queues, and any other scheduling parameters.

Memory-management information. This information may include such items
as the value of the base and limit registers and the page tables, or the segment
tables, depending on the memory system used by the operating system.

Accounting information. This information includes the amount of CPU and real
time used, time limits, account numbers, job or process numbers, and so on.

I/0O status information. This information includes the list of I/O devices
allocated to the process, a list of open files, and so on.
In brief, the PCB simply serves as the repository for all the data needed to start,
or restart, a process, along with some accounting data.
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Process Scheduling

To meet the objectives of multiprogramming and multitasking, the process
scheduler selects an available process (possibly from a set of several available
processes) for program execution on a core. Each CPU core can run one process
at a time. If there are more processes than cores, excess processes will have to
wait until a core is free and can be rescheduled. The number of processes
currently in memory is known as the degree of multiprogramming.

O La ) daliall dlel) dlead) Jsama Uiy ¢ Baaniall algall 5 soasiall dae ydl Calaal giaacl
CPU Jl .5 (38l 68 IS (S é\jﬂ\éncau)ﬂ\ﬁﬂ(émﬂd\hu\ Gllaall (30 de gana
3200 30 Ciblaall xd ¢ 561l (e )ﬁ\uumqmutsu\ La) gl G gl 8 3as) g dulee Jua

O (8 B3 ga sall Cllaall 23e (o jpmy Leil gan Bale) Sy ladie g8l gill p et oy As jUsiY)
Baaztall Aaa pll da Ha B SN 8 aal
Balancing the objectives of multiprogramming and time sharing also requires
taking the general behavior of a process into account. In general, most processes
can be described as either 1/0 bound or CPU bound. An 1/O-bound process is
one that spends more of its time doing I/O than it spends doing computations. A
CPU-bound process, in contrast, generates 1/0 requests infrequently, using more
of its time doing computations.
Aalaall alall & gLl Ble )y Wagl <8 ) 48 Hliia 5 32zl Ao pll Calaal G 031 sl G allay
dalladll saa g3 Adasi yo \}Y\/duqyumfu\wtqw\gum}usm ¢ale JSi
b 4xaii Laa JST |/ O elal o8 LBy ot Al ddeall o8 1/O-bound process .4 S sl
/ Jay <k A CPU-bound process ol ¢ @l (e il Je dnbual)l cililaall o) ja)
Aplaadl Clleall o) ja) (A Ledg (o 2 dall aladiuly @l ¢ ) Sia e S0y 21 A
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Scheduling Queues
As processes enter the system, they are put into a ready queue, where they are

ready and waiting to execute on a CPU’s core. Processes that are waiting for a
certain event to occur — such as completion of 1/O — are placed in a wait queue

(Figure 4).

queue header PCB , PCB ,
ready head =
o . \\egisters/ o
PCB, PCB,, PCB,

wait head /
queue tail -w

Figure 4: The ready queue and wait queues

A common representation of process scheduling is a queueing diagram, such as
that in Figure 5.

— |
5 ready queue > CPU?

I/0 wait queue | I/O request N
time slice L
expired
- hild
child e '
terminates SERTEtCa« cr;?;i;?;]d
wait queue
interrupt interrupt wait for an
occurs wait queue interrupt

Figure 5: Queuing-diagram representation of process scheduling
3oala (o sS8 Cua oalall Clilaall jUSH) A0E 8 e g o ¢ Uil ) Slleall Jas Laxie
S - e das Sygaa s Al Glileal) pia g o 43S el Aadlaeal) 32 g QB e danl) ylati

queuing s Aleall Al 0al ASLAN Jiall (4 JSAN) jUasl Al 8 - =) )AY) / JAaY) Jls)
5 Sl sl Jie ¢ diagram
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CPU Scheduling

A process migrates among the ready queue and various wait queues throughout
its lifetime. The role of the CPU scheduler is to select from among the processes
that are in the ready queue and allocate a CPU core to one of them. The CPU
scheduler must select a new process for the CPU frequently.

Some operating systems have an intermediate form of scheduling, known as
swapping, whose key idea is that sometimes it can be advantageous to remove a
process from memory (and from active contention for the CPU) and thus reduce
the degree of multiprogramming. Later, the process can be reintroduced into
memory, and its execution can be continued where it left off.

b Wasa s s J) gl Adliaal) SUSTY) 30 g8y 5 salad) cilleall JUSTY) el G ddeall din i oy
&8s sall Clileadl G e JLEAY) (8 43S pall dadleall Bas g A san ey 50 Jiady | ldaill
G Gl Lgie saal g ) 43S pal) dadladd) 3as 5 3) 63 anadd s 3 jalall Cililaell jUatiY) 44018
IS 4 S el Aallaad) saa 5l Baaa dolee aay 45 5€ el Aallaad) 33 g A soa galin ol
0N
43S Jidtis ¢ swapping awb <oomd ¢ gaall e Jasny IS5 e Judil) dadail any (g 5iad
sas gl Lol il (e ) 5_SIAN (e Aplee A1) iall e 060 38 Glea¥W) (amy 8 a5l 8 A )l
o Aleall i ale) (S ¢ 3aY iy b saaeiall daall a0 Julis L 5 (RS el Aalladll
(8 5 T (e 28T dalie Sy g ¢3S
Context Switch
When an interrupt occurs, the system needs to save the current context of the
process running on the CPU and restore the saved context of a different process
in a task called context switch. The context is represented in the PCB of the
process. It includes the value of the CPU registers, the process state (see Figure
2), and memory-management information. Generically, we perform a state save
of the current state of the CPU core, be it in kernel or user mode, and then a state
restore to resume operations(Figure 6). Context switch time is pure overhead,
because the system does no useful work while switching. Switching speed varies
from machine to machine, depending on the memory speed, the number of
registers that must be copied, and the existence of special instructions (such as a
single instruction to load or store all registers).
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process Py operating system process P,

interrupt or system call

executing ||
v _ x
| save state inio PCB, |
2 +idle
[reload state from PCB, | |
ridie Interrupt or system call executing
4
| save state into PCB; | )
- idle
|reload state from PCB;|

executing L\—l

Figure 6: Diagram showing context switch from process to process
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A typical speed is a several microseconds. Context-switch times are highly
dependent on hardware support. Also, the more complex the operating system,
the greater the amount of work that must be done during a context switch.
Wil 5 3 36a¥) pea o S IS5 Blad) Jadt il ) aini ) Al s Saa 330 (A 4pnd gaill de ul
(el i U 43 2Ll Cany o3 Jaadl e o) 3 ¢ 1aad ST il aldas oS LS
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CPU SCHEDULING

CPU scheduling is the basis of multiprogrammed operating systems. By
switching the CPU among processes, the operating system can make the
computer more productive.
Aallaall as 5 (hasi DA e el yall sa2aie il dadail Gl 4 45 38 5al) dadladl) 3as 5 4 saa
Agaln) ST 3 el Jrag o Qi) aldail Sy ¢ cilylaall ¢y 43 38 el
Basic Concepts
In multiprogramming, when one process has to wait, the operating system takes
the CPU away from that process and gives the CPU to another process. This
pattern continues. Every time one process has to wait, another process can take
over use of the CPU. On a multicore system, this concept of keeping the CPU
busy is extended to all processing cores on the system. Scheduling of this kind is
a fundamental operating-system function.
dadleall Bas g Jorediil) ol 32y ¢ HUany) L)) cllead) gaa) i Ladie ¢ 3aasiall daa il 8
Aallaall sas 5 ol o sgde (Gudais ¢ 815l anaia plai 3 (5 HAT Daleal Lndany 5 dalaal) Gl (e 45 S 1l
Aldai 3 lf Aida g o all 130 (p0 Al o) ysiaty Uil 3 dadladl (5 53 pen (e Al sadia 2y S 3l
CPU-I1/O Burst Cycle
Process execution consists of a cycle of CPU execution and 1/O wait. Processes
alternate between these two states. Process execution begins with a CPU burst.
That is followed by an 1/0 burst, which is followed by another CPU burst, then
another 1/O burst, and so on. Eventually, the final CPU burst ends with a system
request to terminate execution (Figure 1).
An 1/0-bound program typically has many short CPU bursts. A CPU- bound
Program might have a few long CPU bursts. This distribution can be important
when implementing a CPU-scheduling algorithm.
Clalaall Gl z1 AY!/ Jiay) HUaE g 43S jall dallaall Bas 5 28555 5 50 (e Alaadl i ) oS3y
% Andhy ¢z A) / JWA) b I ay Aleal) s 43S sl Aallaall saa g o cpllall ila G
el 2l ety ¢ Aleil) (8 13Sa 5 ¢ AT 2 5a) / Jaa) 2 a5 ¢ 35S el Aallaall Baa ) Al
(1 Jsall) aual) elgsy allail) callay 45 35S jall dallaall 2a ]
438 el Aadlaal) 3as 5 2085 ol 5 (e ) e 7 A/ JRaYL L jall zeali yill s sing LaBale
dallaall 32 5 (g0 Al sha lady iy e 43S el Aadlaall Bas g Jass jall zali pll (g ging 38 3 juadll
A S el Andlaal) an 5 A saa Apa ) sA i ie Laga @y sil) 138 (5% o (S A Sl
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load store
add store
read from file

CPU burst

wait for I1O I/O burst

store increment

index CPU burst
write to file

wait for I/O I/0 burst
load store
add store CPU burst

read from file

A A A A J

wait for I/O I/0 burst

Figure 1 Alternating sequence of CPU and 1/O bursts.
CPU Scheduler
When the CPU becomes idle, the CPU scheduler selects a process from the
processes in memory that are ready to execute and allocates the CPU to that
process. Ready queue is not necessarily a first-in, first-out (FIFO) queue. A ready
gueue can be implemented as a FIFO queue, a priority queue, a tree, or simply
an unordered linked list. Conceptually, however, all the processes in the ready
queue are lined up waiting for a chance to run on the CPU. The records in the
queues are generally process control blocks (PCBs) of the processes.
e 3panh 458 el Andlaad) san 5 A gan el gy o s ¢ ALl 4 S jal) Aallaall 52a 5 raai Ladie
s Aglandl Gl 3 35S yall Aallaall 30 5 anad s 28wl 3 5alal) o3 ,SIA L850 s sall Cililendl (e
5ol illeal) HUsii) Aal5 365 (Say . (FIFO) Uil Al 5 5 pually Cacsd 530 Us5Y)
JSel) S Uy A5 e je ddasi je Al 2y o5 jad f ) Uaml Al §f FIFO sl dailss
a8 o) b a3 jalall HUatY) AalE 8 Glleall s 8 ¢ ready queue U Sl
b oSaill JS ale JSEy o e Al E G gealiall o) A S ) Aallad) saa e Jaaall
Sbleall (PCBS) <bileall

Preemptive and Nonpreemptive Scheduling

Under nonpreemptive scheduling, once the CPU has been allocated to a process,
the process keeps the CPU until it releases it either by terminating or by
switching to the waiting state. Virtually all modern operating systems including
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Windows, macOS, Linux, and UNIX use preemptive scheduling algorithms.
Under preemptive scheduling, the CPU is taken from the process abandomly and
given to other process.
laall G ¢ e dglaad 45 3S jal) Anllaal) Bas g panadd 3 yaa « nONpreemptive - ol 8
paais JUAEY) Alla Y il o eLedy) sk e L) Ly (i B 3 al) Al B 53 Jadins
e )53 UNIX s Linux s macOS s Windows <ld i Le Gy 5 daal) Jueeill Lokl apan
La slac) o g dalaall (30 45 S yall Andlaall Bas g o) 350 5 ¢ A gaall 038 Ja A& preemptive 4 sas
Al laal

Dispatcher
Another component involved in the CPU-scheduling function is the dispatcher.
The dispatcher is the module that gives control of the CPU’s core to the process
selected by the CPU scheduler. This function involves the following:
» Switching context from one process to another
* Switching to user mode
« Jumping to the proper location in the user program to resume that program
The dispatcher should be as fast as possible, since it is invoked during every
context switch. The time it takes for the dispatcher to stop one process and start
another running is known as the dispatch latency and is illustrated in Figure 2.
6 el all 5 Cus sl o all 5 23S pall dnllaall B2 5 Al gan Al g 3 iy AT pumic
A8l Aallaall 52 5 Jama 8 (o Lo Sl s ) Alaall 43S al) dllaall a5y oSl miay
Lok Lo Abb sl 28 (panal
AT G Blee e Blandl Jaie
padiuall ma 5 ) aaille
zeabi ) @l ol andiioaal) zeals 8 Caliall ISl ) sl
S i iyl B s S £ o e i oy G ¢ (S eyl sl 0585 O o
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Figure 2 The role of the dispatcher

22



Scheduling Criteria
Different CPU-scheduling algorithms have different properties. In choosing
which algorithm to use in a particular situation, we must consider the properties
of the various algorithms. Many criteria have been suggested for comparing CPU-
scheduling algorithms.
Which characteristics are used for comparison can make a substantial difference
in which algorithm is judged to be best. The criteria include the following:
e )lsall i) v ddlidae Gailiads ddliaal) 4508 jall dalleal) 30a 5 A gan Cle )l sa als
a3 2] Adbiaall cilge 1 Al Gaibiad Jlie W) 8 3 5 O Cang ¢ ana il ge A Lgal2Ai) Cany )
a2 Gailiadd) o, 4 S yall dalleall 5as 5 4 s a3 5l 53 4l julaall (e 2l ) sl
AU yulaal) Jaii g SV Ll Lo Ay ) sa o aSall b 50l 51 Ll () 66 of oSy 4 laall
» CPU utilization. We want to keep the CPU as busy as possible. Conceptually,
CPU utilization can range from 0 to 100 percent. In a real system, it should range
from 40 percent (for a lightly loaded system) to 90 percent (for a heavily loaded
system). (CPU utilization can be obtained by using the top command on Linux,
macOS, and UNIX systems.)
Aasia 2 5l 5 of (S ¢ Apanplial) Talill (po SaY) 58 4l gidio 4y Syl Anllaall 52 5 6liy) 3y 53
AUail) ALl 40 (e 5l i Of am ¢ Rsgal) QUi & 25Lall 100 ) 0 e 43S sl Aallaall 3as
san g aladind e Jgeanll (Sa), (UpS IS Jaae alail) DL 90 L)) (ciuid IS Jass
( UNIXs macOS s Linux dekil i top Y alasiuly 4, 5 sl dxllaal

e Throughput. One measure of work is the number of processes that are

completed per time unit, called throughput. For long processes, this rate may be

one process over several seconds; for short transactions, it may be tens of

processes per second.

4l throughput (sess ¢ dsie ) 32 5 S LdlS) o5y il Cililead) sae 8 Jandl alia aale
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 Turnaround time. The interval from the time of submission of a process to the
time of completion is the turnaround time. Turnaround time is the sum of the
periods spent waiting in the ready queue, executing on the CPU, and doing 1/0.
)il ¢ gane s 5 turnaround time sa oY) 85 ) dpleall Jlos ) S8 5 (e S S Jualille
<y 5 4 38 Hall Anllaall B2 5 e 2l &) % 5 ready queue & JUREY) G W glad o5 )
2 AY) [ JaaY) alilee i

» Waiting time. The CPU-scheduling algorithm affects only the amount of time

that a process spends waiting in the ready queue. Waiting time is the sum of the

periods spent waiting in the ready queue.

DU 8 dulaal) 4 3 gl laie e Jadd 4y S yall Aallaall sas 5 AL gan dpa ) ) sA i gie
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* Response time. In an interactive system, turnaround time may not be the best
criterion. Often, a process can produce some output fairly early and can continue
computing new results while previous results are being output to the user. Thus,
another measure is the time from the submission of a request until the first
response is produced. This measure, called response time, which is the time it
takes to start responding, not the time it takes to output the response.
It is desirable to maximize CPU utilization and throughput and to minimize
turnaround time, waiting time, and response time.
Alead) i 38 ¢ a1 e ES 8 jliee Juadl LlaiuV) cg ()5S Y 08 ¢ el LUl b
Aol sl o) A ol i sl s (8 ey La s ) S g 6 il Al Gany
a5V AlaiaV) U] a5 s callad ail) (e Bl g AT Gulie @l ¢ ks aadiall
z)AY @il G gl a5 ¢ Adaiul) o2l (9 jriuall 8 S 58 5 ¢ response time (e (bl
EEENNYY
A5 response time 4 &5 throughput J's CPU utilization adasd Guaivwdl (e o)
.turnaround time )5 waiting time
Scheduling Algorithms
CPU scheduling deals with the problem of deciding which of the processes in the
ready queue is to be allocated the CPU’s core. There are many different CPU
scheduling algorithms. we describe these scheduling algorithms in the context of
only one processing core available.
s ready queue J 3 Slleadl e sl dan ACaa a4y S pall Aadlaal) Bas A gan Jala
4 5% yall Aadleall Bas 9 A gan e )l & (e el @llin 4 S yall dAadlzall 3as 5 8) 93] Lganads
Aalie Jadd 3aa g 4l dallae (Bl (8 4 gaa e )l a8 4N e ) a1 5 Aakia)
1. First-Come, First-Served Scheduling
» The process that requests the CPU first is allocated the CPU first.
* The implementation of the FCFS policy is easily managed with a FIFO
queue.
* The code for FCFS scheduling is simple to write and understand.
 the average waiting time under the FCFS policy is often quite long.
Consider the following set of processes that arrive at time 0, with the length
~of the CPU burst given in milliseconds:
N 35S sl dallaall s 5 callat Gl Alaall Y 6l 4 58 jal) Aallaall B2 5 (apiadi iy o
FIFO. _Uaiil A8 JMA (e A geun FCFS Anliw 2855 5 )0 o5
) e85 Sl Jeww FCFS 4 goa dna ju e
S Ssha (56K L Wlle FCFS Asbis o sy JUSY) 2 g Jas gia o
Baa g 2T (e ) 13T aa ¢ () gl (8 Jaad (A1 AN Clleall Ao gana el (a8
Al Alally 4538 all dallall
Process  Burst Time
P 24
P,

P,

If the processes arrive in the order P1, P2, P3, and are
served in FCFS order, we get the result shown in the following Gantt chart

6%}

42

24



P'I P2 p3

0 24 27 30

» Waiting time for PL(WTp,) is start time(pl) — arrival time(pl):
WTp1=0 -0=0
WTpp-24 -0 =24
WTp3-27 — 0 =27

* Average waiting time(AWT) is (0+ 24 + 27)/3 = 17 millisecondes.

« Turnaround time (TATp) for each process is calculated as end time(p) —

Arrival time(p)

« TATp=24-0=24

* TATpgz 27 -0=27

« TATp=30-0=30

» Average turnaround time(ATAT) is (24 + 27 +30) / 3 = 27 milliseconds
If the processes arrive in the order P2, P3, P1, however, the results will be as
shown in the following Gantt chart

BB Py

0 3 6 30

The average waiting time is now (6 + 0 + 3)/3 = 3 milliseconds.
Thus, the average waiting time under an FCFS policy is generally not minimal
and may vary substantially if the processes’ CPU burst times vary greatly.
» The FCFS scheduling algorithm is nonpreemptive.
» The FCFS algorithm is thus particularly troublesome for time-sharing
systems.
B ale JC5 (S 2all Gul FCFS dubon Con gay JUasY) g o gla la ¢ July o
) 7S A (i cilileall 4y % pall Aalladl) saa 5 2aw il of il 1Y)l (K5 Caliay
nonpreemptive. & FCFS Asaa 4l e o
)] A8 lie dalail (ald IS5 duulie Cul FCFS delsa o8 Milge o
Example: Consider the following set of processes

Process Burst time Arrival time
P1 10 0
P2 ' 6 [ 6
P3 3 7
P4 7 22

1. Draw the Gantt chart for these processes applying FCFS algorithm.
2. What is the waiting time for each process?
3. What is the Average waiting time?
4. What is the Turnaround time for each process?
5. What is the Average turnaround time?
FCFS.aue ) sa Gubad Al cililaall 03] Gantt Jadada ans Il
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2. Shortest Job First (SJF)

It is a nonpreemptive scheduling discipline in which the waiting job/process with
the smallest estimated run time to completion is run next. If two jobs have the
same run-time, FCFS is used. SJF reduce average waiting time over FCFS. The
waiting times, however, have a larger variance (i.e. are more unpredictable) than
FCFS, especially for large jobs. SJF selects jobs for service in a manner that
ensures the next job will complete and leave the system as soon as possible.
Oe e Jusdi < 5 JB) 0 Alaal) / Lagal) Juriiiy a4 &5 nonpreemptive 4 sas alas 43|
By FCFS aladiul aiwd ¢ Jaadill <l i Lagd Glslee ) ldala 5 s 5 13) 3 k00N algall o
Y sf) ST o L U b ld ¢ S aa, FCFS = &5 laa aiaV) < g Jaw st (30 SIF
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The obvious problem with SJF is that it requires precise knowledge of how
long job/process will run, and this information is not usually available. The best
SJF can do is to rely on user estimates of run times.

SJF scheduling is used frequently for long-term scheduling (i.e., batch jobs).
Since predicting future CPU bursts is difficult, SJF scheduling is seldom used for
short-term scheduling.
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Example:
Process Arrival Time Burst Time
P 0.0 7
P, 2.0 4
P3 4.0 1
P4 5.0 4
Pi Ps P, P4
0 7 8 12 16

Average waitingtime =(0+6+ 3+ 7)/4 =4
Turnaround time for P1=7

Turnaround time for P,= (8-2)+4=10
Turnaround time for Ps= (7-4)+1=4
Turnaround time for P4,=(12-5)+ 4=11

The average =(7+10+4+11)/4=8

3. Shortest Remaining Time Eirst(SRTF)
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The SJF algorithm can be either preemptive or non-preemptive. The difference
between them that when a new process arrives the ready queue, a non-preemptive
SJF algorithm will allow the currently running process running to finish its CPU
burst (SJF algorithm we discussed above), while in a preemptive SJF the
algorithm will preempt the currently executing process when the newly arrived
process is shorter than what is left of the currently executing process. Preemptive
SJF scheduling is sometimes called shortest-remaining-time-first scheduling.
SRTF has a higher overhead than SJF. It must keep track of the elapsed service
time of the running job and must handle occasional preemptions. Arriving small
processes will run almost immediately. SRT, however, has an even larger mean
waiting time and variance of waiting time than SJF.
Leaic 43l 58 Legi (3,40 .nonpreemptive sl preemptive g si (s SIF 4yl 53 (585 Of (Sa
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Example 1:
Process Arrival Time Burst Time
P 0.0 7
P, 2.0 4
P3 4.0 1
P4 5.0 4
P1 P2 Ps3 P4
Pl I:)2 P3 PZ P4 P1
0 2 4 5 7 11 16

Processl starts at time 0O, since it is the only job in the queue. Process2 arrives at

time 2. The remaining time for processl (5 time units) is larger than the time

required by process2 (4 time units), so processl is preempted, and process2 is

scheduled. The average turnaround time for this example is:

((16-0) +(7-2)+(5-4)+(11-5))/4 =7 time units

gl 2 cdgll 80 Adleal) Jead | USTY) AGE 6 saa ol Adda ol LS ¢ 0 gl 8 ] Aulaal) s

iy Gl ¢ (Aia ) lan g 4) 2 Aleal) allati 2 gl (ge ST (e Slan g 5) T Adenll il
;o JUal) 13gd (3 il i gl Jass gie 2 dpleall Al gas o g ¢ ] Aglaal) (Sl
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((16-0) + (7-2) + (5-4) + (11-5)) / 4 = 7 &usia 3 Shan s

Example 2:
Process  Arrival Time  Burst Time
P, 0 8
P 1 4
P; 2 9
Py 3 5
the resulting preemptive SJF schedule is as depicted in the following Gantt
chart:
P1 P2 P3 P4
P, £ 2, P P
971 5 10 17
\S_ﬁ;:f“g;e ofPl =8-1=7 b?cnnhmm
Lefttime of P2: 4-1=3 El«);;

Time of P3=9 PA4=25
9:«' 32 No So processes will be executed as SJF:
P2 confinue P4 then P1 then P3

Waiting time for process P is the summation of waiting times for it in the ready queue
WTp1=(0-0)+(10-1)=9

WTp=1-1=0

WTp3=17-2=15

WTps=5-3=2

Average waiting time(AWT) is (0+ 0 + 15+2) / 4 = 4.75 millisecondes.

Turnaround time (TATp) for each process is calculated as end time(p) — Arrival time(p)

OR summation of waiting times(P) + Burst time(P)

TATp1=9 + 8=17

TATe,=0 + 4=4

TATp3=15 + 9=24

TATp=2 + 0=2

Average turnaround time(ATAT) is (17 + 4 +24+ 2) / 4 = 11.75 milliseconds

4. Round-Robin Scheduling

The round-robin (RR) scheduling algorithm is similar to FCFS scheduling, but
preemption is added to enable the system to switch between processes. A small
unit of time called a time quantum or time slice, is defined. A time quantum is
generally from 10 to 100 milliseconds in length. The ready queue is treated as a
circular queue. The CPU scheduler goes around the ready queue, allocating the
CPU to each process for a time interval of up to 1-time quantum. The average
waiting time under the RR policy is often long.
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Consider the following set of processes that arrive at time 0, with the length of
the CPU burst given in milliseconds

(Sl Canal preemption 41 (S5 « FCFS 4 saa round-robin (RR) A sas 4 ) ) & 4nis
time ! time quantum (oess ¢ 8l (a3 jaa Bas 5 Lt o e Gilleal) (y Jiail) (e sl
Al ae Jaladll o3y Al e 100 ) 10 o ple JS5 time quantum Al J sk &, slice
Lald Jgn 43S yall dallaall s 5 A g el Jay 5 Ay yilo Ut Al Ll e 3 3alad) Uy
time quantum (Y duaidzia 53 yidl dulae JSI4, S jall dadleall 8as 5 Ganady 5 ¢ 3 jaladl Ui
Shsh RR Al o per SUSEY) 8 5 dans gie (555 L Wlle 2l

Aadlaall 3 5 e il sk aans ga ¢ 0 gl G Joad A 200 Cillanll e gana gin il

A LI & L)
Process Burst Time
P, 24
p, 3
P, 3
P1 P2 P3 P1 P1 P1 P1 P1
0 4 7 10 14 18 22 26 30

« Waiting time for P1 = (0-0) +(10-4) = 6 milliseconds
P2 =4 — 0 =4 milliseconds
P3 =7 -0 =7 milliseconds
» The average waiting time = (6 + 4 + 7) / 3 =5.66 milliseconds
The performance of the RR algorithm depends heavily on the size of the time

guantum. Suppose the examples below: ‘
AY) ALY 8 WS time quantum aas e S IS5 RR Al i elal aaing

process time = 10 quantum context
switches
12 0
0 10
6 1
0 6 10
1 9

0 1 2 3 4 5 6 7 8 9 10

To improve performance, the time quantum must be large with respect to the

context switch time. We note that turnaround time depends on the size of the time

quantum, and it can be improved if most processes finish their next CPU burst in

a single time quantum.

A s o) e el sl | time quantum ) e S JSG addisy RR Ase )l s& e1a) )

Goriwadl a3l o) B3y | context switch ) () ) 4 | S time quantum

Gllaal) ale ) il o Adsaat (Kay 5 « time quantum J) Jlaie e adiay (turnaround time)
Al time quantum (o2 st (e ) elgd)
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5. Priority Scheduling

A priority is associated with each process, and the CPU is allocated to the process
with the highest priority. Equal-priority processes are scheduled in FCFS order.
Priorities are generally indicated by some fixed range of numbers, such as 0 to 7
or 0 to 4,095. Some systems use low numbers to represent low priority; others
use low numbers for high priority. We will assume that low numbers represent
high priority.

As an example, consider the following set of processes, assumed to have arrived
at time 0 in the order P1, P2, - - -, P5, with the length of the CPU burst given in
milliseconds:

o5 gl Ay 51 5Y) ld Alaall 4y S sall Anllaall B2n 5 (anads g ¢ dalae IS5 461 6W) Jai i
JMa e ale I iy oY1 ) 5 ,LEY) a5, FCRFS < i Ay suiall 415391 <l clleall 4 s0a
Aaidig Wl i Aalail) (oazy aadiidi s 4095 A1 0 e 5 7 A 0 Jie ¢ ALY e d35 Ao sana
Ade sl e Jsanll diaidiall S8 V) JAY) (el addiey a8 ¢ Aumidie 4l Sl
Aalle 4 o)) Jiad dcadaiiall A8 )Y o oy Uil 50 A
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Process Burst Time Priority
IEN 10 3
P, 1 1
P, 2 1
P, 1 5
P 5 2

Using priority scheduling, we would schedule these processes according to the
following Gantt chart:

B

2 Pg =

0 1 6 16 18 19

The average waiting time is 8.2 milliseconds.
Priorities can be defined either internally or externally. Internally defined
priorities use some measurable quantity or quantities to compute the priority of a
process. For example, time limits, memory requirements, the number of open
files, and the ratio of average 1/O burst to average CPU burst have been used in
computing priorities. External priorities are set by criteria outside the operating
system, such as the importance of the process, the type and amount of funds being
paid for computer use, the department sponsoring the work, and other, often
political factors.
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Priority scheduling can be either preemptive or nonpreemptive. A major problem
with priority scheduling algorithms is indefinite blocking or starvation. A
priority scheduling algorithm can leave some low priority processes waiting
indefinitely. A solution to the problem of indefinite blockage of low-priority
processes is aging. Aging involves gradually increasing the priority of processes
that wait in the system for a long time. For example, if priorities range from 127
(low) to 0 (high), we could periodically (say, every second) increase the priority
of awaiting process by 1.
Another option is to combine round-robin and priority scheduling in such a way
that the system executes the highest-priority process and runs processes with the
same priority using round-robin scheduling. Let’s illustrate with an example
using the following set of processes, with the burst time in milliseconds:
e ) 53 8 4 H)l SV nonpreemptive sl preemptive st oY) A sas ¢ 65 G S
_starvation I sl ¢ 2l jie aall o Al gV A gaa
Jal ) JUsiY) 8 dadaiall 461 oW1l claleall Giang 4l oW1 A gan daa ) lsa & o) (S
ey aging ) ss daddiall 45l Y1l Slleall anall e Conall A Jall o) | ansa
13) ¢ QUiall Jasas Sle ALy 5 5l Uil & 5l ) cilaall 5051 3 Ay 35 5303 5 aging
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T Ay Aleal) Uil 3 A 610 8al 5 (Al
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Process Burst Time Priority
P, 4 3
P, 5 2
Py 8 2
P, 7 1
Pe 3 3

Using priority scheduling with round-robin for processes with equal priority, we
would schedule these processes according to the following Gantt chart using a
time quantum of 2 milliseconds:
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P P

5

2

0 7 9 11 13 15 16 20 22 24 26 27

In this example, process P4 has the highest priority, so it will run to completion.
Processes P2 and P3 have the next-highest priority, and they will execute in a
round-robin fashion. Notice that when process P2 finishes at time 16, process P3
Is the highest-priority process, so it will run until it completes execution.
Now, only processes P1 and P5 remain, and as they have equal priority, they
will execute in round-robin order until they complete.
L P3 5 P2 cililaall JLaSY) s Janias SN ¢ PR Laall (5 gamill Ay 51 01 (585 ¢ JUall 120 8
P2 ddead) elgiil ie 45l La¥, round robin «ostuls L oy Cogu g ¢ 401 (5 guadl) 4 51 Y
sl (S i LeLaan s Sl ¢ (5 a4y o1 V) I3 Aland) & P3 dslend) (5S¢ 16 il
round A sas cus i Laaduii aband ¢ 4y slacia 435l 5l Legd Ly g « baié P55 PT cililaall 35 ()Y)
JeS5 s robin
6. Multilevel Queue Scheduling
With both priority and round-robin scheduling, all processes may be placed in a
single queue, and the scheduler then selects the process with the highest priority
to run. In practice, it is often easier to have separate queues for each distinct
priority, and priority scheduling simply schedules the process in the highest-
priority queue. This is illustrated in Figure 5.7. This approach—known as
multilevel qgueue— also works well when priority scheduling is combined with
round-robin: if there are multiple processes in the highest-priority queue, they are
executed in round-robin order. In the most generalized form of this approach, a
priority is assigned statically to each process, and a process remains in the same
gueue for the duration of its runtime.
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Figure 1 Separate queues for each priority.

highest priority

’:ﬁ" real-time processes

':3’( SYStEM Processes
l:}{ interactive processes

‘—&‘ batch processes

i

lowest priority

Figure 2 Multilevel queue scheduling.
A multilevel queue scheduling algorithm can also be used to partition processes
into several separate queues based on the process type (Figure 2). For example, a
division between foreground (interactive) processes and background (batch)
processes. Each type may have different scheduling needs.
Separate queues might be used for foreground and background processes, and
each queue might have its own scheduling algorithm. In addition, there must be
scheduling among the queues, which is commonly implemented as fixed-priority
preemptive scheduling.
Let’s look at an example of a multilevel queue scheduling algorithm with four
queues, listed below in order of priority:
1. Real-time processes
2. System processes
3. Interactive processes
4. Batch processes
Each queue has absolute priority over lower-priority queues. No process in the
batch queue, for example, could run unless the queues for real-time processes,
system processes, and interactive processes were all empty. If an interactive
process entered the ready queue while a batch process was running, the batch
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process would be preempted. Another possibility in this algorithm is to time-slice
among the queues.
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7. Multilevel Feedback Queue Scheduling
Normally, when the multilevel queue scheduling algorithm is used, processes are
permanently assigned to a queue when they enter the system. This setup has the
advantage of low scheduling overhead, but it is inflexible. The multilevel
feedback queue scheduling algorithm, in contrast, allows a process to move
between queues.
If a process uses too much CPU time, it will be moved to a lower-priority queue.
In addition, a process that waits too long in a lower-priority queue may be moved
to a higher-priority queue. This form of aging prevents starvation.
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Figure 3 Multilevel feedback queues.
In general, a multilevel feedback queue scheduler is defined by the following
parameters:
* The number of queues
* The scheduling algorithm for each queue
* The method used to determine when to upgrade a process to a higher priority
queue
» The method used to determine when to demote a process to a lower priority
queue
» The method used to determine which queue a process will enter when that
process needs service
The definition of a multilevel feedback queue scheduler makes it the most general
CPU-scheduling algorithm. Unfortunately, it is also the most complex algorithm,
since defining the best scheduler requires some means by which to select values
for all the parameters.
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Deadlocks

In a multiprogramming environment, several threads may compete for a finite
number of resources. A thread requests resources; if the resources are not available
at that time, the thread enters a waiting state. Sometimes, a waiting thread can never
again change state, because the resources it has requested are held by other waiting
threads. This situation is called a deadlock. deadlock is a situation in which every
process in a set of processes is waiting for an event that can be caused only by
another process in the set.
) sall Gl thread A1 .a)) sall (e 2 gasa 22 e threads sae (pdliis a8 ¢ saaafiall daa yll iy =
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A system consists of a finite number of resources to be dlstnbuted among a number
of competing threads. The resources may be partitioned into several types (or
classes), each consisting of some number of identical instances. If a thread requests
an instance of a resource type, the allocation of any instance of the type should
satisfy the request. If it does not, then the instances are not identical, and the resource
type classes have not been defined properly.
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A thread must request a resource before using it and must release the resource after
using it. A thread may request as many resources as it requires to carry out its
designated task. Obviously, the number of resources requested may not exceed the
total number of resources available in the system. Under the normal mode of
operation, a thread may utilize a resource in only the Request, Use, and Release
sequence. The request and release of resources may be system calls, Examples are
the request() and release() of a device, open() and close() of a file, and allocate() and
free() memory system calls.
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A system table records whether each resource is free or allocated. For each resource
that is allocated, the table also records the thread to which it is allocated. If a thread
requests a resource that is currently allocated to another thread, it can be added to a
gueue of threads waiting for this resource.
anadi & Al thread ) Liay) J saad) Jas ¢ Uanadaal a2 ) e S OIS 1) La alail) J son Jay
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Necessary Conditions
A deadlock situation can arise if the following four conditions hold simultaneously
In a system:
1. Mutual exclusion. At least one resource must be held in a nonsharable mode; that
I, only one thread at a time can use the resource. If another thread requests that
resource, the requesting thread must be delayed until the resource has been released.
2. Hold and wait. A thread must be holding at least one resource and waiting to
acquire additional resources that are currently being held by other threads.
3. No preemption. Resources cannot be preempted; that is, a resource can be released
only voluntarily by the thread holding it, after that thread has completed its task.
4. Circular wait. A set {T0, T1, ..., Tn } of waiting threads must exist such that TO is
waiting for a resource held by T1, T1 is waiting for a resource held by T2, ..., Tn—1
Is waiting for a resource held by Tn, and Tn is waiting for a resource held by TO.
aldas 8 sl g i 5 AUl da Y da s 580 @ d 6 13 Adeadlock Al Las o oS
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Resource-Allocation Graph
Deadlocks can be described more precisely in terms of a directed graph called a
system resource-allocation graph. This graph consists of a set of vertices V and a
set of edges E. The set of vertices V is partitioned into two different types of nodes:
T={T1, T2, ..., Tn}, the set consisting of all the active threads in the system, and R
={R1, R2, ..., Rm }, the set consisting of all resource types in the system. A directed
edge Ti — Rj is called a request edge; a directed edge Rj — Ti is called an
assignment edge. Pictorially, we represent each thread Ti as a circle and each
resource type Rj as a rectangle.
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The resource-allocation graph shown in Figure 8.4 depicts the following situation.
The sets T, R, and E:

o T={T1,T2, T3}

°cR={R1,R2,R3,R4}

oE={T1—>R1,T2—>R3,R1—>T2,R2—>T2,R2—>T1,R3—> T3}
Resource instances:

> One instance of resource type R1

> Two instances of resource type R2

> One instance of resource type R3

o Three instances of resource type R4
Thread states:

> Thread T1 is holding an instance of resource type R2 and is waiting for

an instance of resource type R1.

> Thread T2 is holding an instance of R1 and an instance of R2 and is

waiting for an instance of R3.

> Thread T3 is holding an instance of R3.

system  oamall 4 sall Slal) anl) Adand g0 482 ST S5 deadlock J c¥ls cia (Sa

(e Ae saaas Vsl (e e saae e Sl an )l 11 (S5 resource-allocation graph

T={ T1, T2, ...,Tn} 3l e Gilise e J) dende Vo ugsll Ao sene, B lsall

25« R={R1, R2, ...Rm} s« aaill a3l threads 41 JS o (sS85 Al de sanalla

Qllll déls Ti — Rj deasall ddlall o sl 8 55 sall o) 6 paan e S5 ) de sanll

dnlill e (assignment edge) gareiill s Rj — Ti dea sall 2l ausi ¢ (request edge)

kil Rj 2 50 & 53 S 53 308 T das IS Jiai ¢ 4 ) gaal
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o Ule 3andIT 4R SE:

o T ={T1 T2 T3}

oR={R1 R2 R3 R4}

oFE={Tl >Rl T2—>R3RL—->T2R2—->T2 R2—>T1R3->T3}
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/
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Figure 1: Resource-allocation graph
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Given the definition of a resource-allocation graph, it can be shown that, if the graph
contains no cycles, then no thread in the system is deadlocked. If the graph does
contain a cycle, then a deadlock may exist.
e s sing ¥ Al an N Q13 4l ledal Sy cresource allocation graph ) < yas )kl
390 e (5 st (Al a3l 1Y) L) deadlock A 8 aUaill 8 thread @llia ¢ sSs ol ¢ &l 5
. deadlock <lua ¢Sy s ¢
If each resource type has exactly one instance, then a cycle implies that a deadlock
has occurred. If the cycle involves only a set of resource types, each of which has
only a single instance, then a deadlock has occurred. Each thread involved in the
cycle is deadlocked. In this case, a cycle in the graph is both a necessary and a
sufficient condition for the existence of deadlock.
Canati Adla) il 1)) deadlock <osas ) i dalad) d ¢ Jascalli sl g paie AJ)A&)AJSJQLS 13)
& < lia thread JSs .deadlock cuas 33 ¢ 1asd aal 5 jeaic Leia S5 ¢ 3l gall ) 551 (e Ao sana
S o) S 1y 5 g U i Slad) )1 8 A8l e ¢ Alladl 28 i deadlock ) dlls Jao ddlal)
. deadlock
If each resource type has several instances, then a cycle does not necessarily imply
that a deadlock has occurred. In this case, a cycle in the graph is a necessary but not
a sufficient condition for the existence of deadlock.
To illustrate this concept, we return to the resource-allocation graph depicted in
Figure 1.
o2a & deadlock s 3y pmally (fad ¥ Adal) Glé ¢ yualic sac 3 ) gall 15 (e g 58 TGS 1Y)
o seiall 138 o 5il, deadlock ) 2 sa o) LS U i cund i€l 55 5 5 juia bl sl 3 Alal) ¢ A
1. JSdll 4 ~aa gl resource-allocation graph ) () 2 sas ¢
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Ry
Figure 2: Resource-allocation graph with a deadlock

Now consider the resource-allocation graph in Figure 2. In this example, we also
have a cycle:
T1-R1—->T3—-R2—>T1
Adla Uyl Lol ¢ JU) 138 8 3 JSall a resource-allocation graph -V gz sl oY)
Tl - Rl > T3 ->R2 —>TI

(Ts)
Figure 3 Resource-allocation graph with a cycle but no deadlock.
Methods for Handling Deadlocks
Generally speaking, we can deal with the deadlock problem in one of three ways:
* We can ignore the problem altogether and pretend that deadlocks never occur in
the system.
» We can use a protocol to prevent or avoid deadlocks, ensuring that the system will
never enter a deadlocked state.
* We can allow the system to enter a deadlocked state, detect it, and recover.
To ensure that deadlocks never occur, the system can use either a deadlock
prevention or a deadlock-avoidance scheme. Deadlock prevention provides a set of
methods to ensure that at least one of the necessary conditions cannot hold. Deadlock
avoidance requires that the operating system be given additional information in
advance concerning which resources a thread will request and use during its lifetime.
deadlock =) ae Jalaill (3 )l
1Bk D (e 32a) 5 A deadlock ) Alie e Jalatl) Wiy ¢ ale Jy
AUaill 818 sy Y deadlock ) ol sl 5 Ll i) Jalas ) LiSage
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Deadlock Prevention
For a deadlock to occur, each of the four necessary conditions must hold. By
ensuring that at least one of these conditions cannot hold, we can prevent the
occurrence of a deadlock. We elaborate on this approach by examining each of the
four necessary conditions separately.
DA e A )Y g8l e IS denaiy $88T O (3wl (e 8 ¢ deadlock ) s dal o
. deadlock A1 usas aiey 4ld ¢ Loy il 38 (pe JBY) e aal g S
1.Mutual Exclusion
The mutual-exclusion condition must hold. That is, at least one resource must be
nonsharable. Sharable resources do not require mutually exclusive access and thus
cannot be involved in a deadlock. Read-only files are a good example of a sharable
resource.
QB e S OF Y e aal s 3 e cang adl iy Gl Jalgial) alaiina) da pd e o) ang
.deadlock I 84S jlia ¢ oS3 (UL 5 Ledl b peas Y gum 9 4S LA ALEN 5 ) gall B Y AS HLiall
) ) AS Lnall AL 3 ) gall 1an Yl (Jadose) jall) cilile e
2.Hold and Wait
To ensure that the hold-and-wait condition never occurs in the system, we must
guarantee that, whenever a thread requests a resource, it does not hold any
other resources. One protocol that we can use requires each thread to request and
be allocated all its resources before it begins execution.
An alternative protocol allows a thread to request resources only when it has none.
Both these protocols have two main disadvantages. First, resource utilization may
be low, since resources may be allocated but unused for a long period. Second,
starvation is possible. A thread that needs several popular resources may have to
wait indefinitely, because at least one of the resources that it needs is always
allocated to some other thread.
13 50 Lo process bl Levie il Jlaca cang ¢ pUaill & 10 hold and wait s &pas pie Glecal
JS ) iy Lgaladind (Say Gl Y Ssigpall aal s AT alas Wi ems 058 Y o)) cang 4dld
i) g o 3 W ) ge gaea Ll panadi, ki process
O oS 55l (pd DS Lgie (5 L s (35S0 Y Laie Jaitd 3 ) sl illay process U Al JsS s ey
2 LSy 3 ) all (mnadd (e Can ¢ Limii ()55 38 3l pall aladid ¢ Vgl Gl ) e Leg]
) sall (e maall ) =iy 3 process 4 starvation J) J seas 4lSal ¢ Wil 4l glas yidl dendiv
G 3 sl e JAY) e Taa s Ganadd S 43 ¢ e e Jal 1) SV ) sy 28 dailal
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3.No Preemption
To ensure that this condition does not hold, we can use the following protocol. If a
thread is holding some resources and requests another resource that cannot be
immediately allocated to it (that is, the thread must wait), then all resources the
thread is currently holding are preempted.

44



The preempted resources are added to the list of resources for which the thread is
waiting. The thread will be restarted only when it can regain its old resources, as
well as the new ones that it is requesting. This protocol is often applied to resources
whose state can be easily saved and restored later, such as CPU registers and
database transactions.
s Process ) 55 s OIS 13 ) S 55 ) aladial Wiy ¢ daay ¥ byl 1 o)) e oSl
) sall paan claaind ¢ (ki o Gang ¢ ) )il e danadi (Sa Y AT ge callay 5 5 ) sall
e g 58 cpall Sl 4 process 3 s
et Al s process A Caaca s 38 Ledal e L;_”d\ 2 )l sall Aild ) cae il ‘_,_d\ ) gall ddliza) o
Glle el ‘;_“d\ sauaad) SIS 5 ¢ Al Lad ) ge Balaiul LeiSa Ladic dasd process J) Qe sale ) Al
Ol Jie ¢ BaY Lgialeiad 5 4 gy Lilla Jads €y 0 ) sal) e JsS 5500 1aa Gaukai %y L
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3.Circular Wait
One way to ensure that this condition never holds is to impose a total ordering of
all resource types and to require that each thread requests resources in an
increasing order of enumeration. To illustrate, we let R = {R1, R2, ..., Rm } be the
set of resource types. We assign to each resource type a unique integer number,
which allows us to compare two resources and to determine whether one precedes
another in our ordering.
Al 5 3l sl 130 aand Moan) i (8 98 Tl oty ¥ o 51 138 (5 (e 2SI (330500 s
«* R={R1,R2, .., R} Uil ¢ muagill (gaclaai cusiji 3 ) sall process JS itk ol
Loga) a5 (o yecma 4 ey ranss Laa ¢ 3 )50 & 95 JST 8 s e Gany 3 ) sal) £ 53l e sane
) & AV Gany o O o

Deadlock Avoidance
Possible side effects of preventing deadlocks by this method, however, are low
device utilization and reduced system throughput.
An alternative method for avoiding deadlocks is to require additional information
about how resources are to be requested. Each request requires that in making this
decision the system consider the resources currently available, the resources
currently allocated to each thread, and the future requests and releases of each thread.
Given this a priori information, it is possible to construct an algorithm that ensures
that the system will never enter a deadlocked state. A deadlock avoidance algorithm
dynamically examines the resource-allocation state to ensure that a circular-wait
condition can never exist.
alaiiul (=liss) s deadlock prevention ) 44 jlay 3 geall OV aial Alaiaal) il BV
Al dal] (alisil 5 Sleall
ie calla JS Gl o)) gall alls 4dS J g ddlica) il slae alla o4 deadlock A sl Al 45y )
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A state is safe if the system can allocate resources to each thread (up to its maximum)
in some order and still avoid a deadlock. More formally, a system is in a safe state
only if there exists a safe sequence. A sequence of threads <T1, T2, ..., Tn> is a safe
sequence for the current allocation state if, for each Ti, the resource requests that Ti
can still make can be satisfied by the currently available resources plus the resources
held by all Tj, with j <.
A safe state is not a deadlocked state. Conversely, a deadlocked state is an unsafe
state. Not all unsafe states are deadlocks.
e Lo i i (oY) 2a) i) process JS) o) sall pasads alaill (Sl (S 13) Ll Alal) g 5
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unsafe
deadlock

Figure 1 Safe, unsafe, and deadlocked state spaces.

Example:
Maximum Needs  Current Needs
T, 10 5
T, 4 2
T, 9 ?

Resource-Allocation-Graph Algorithm

In resource-allocation graph,we introduce a new type of edge, called a claim edge.
A claim edge Ti—Rj indicates that thread Ti may request resource Rj at some time
in the future. When thread Ti requests resource Rj, the claim edge Ti — Rj is
converted to a request edge. Similarly, when a resource Rj is released by Ti, the
assignment edge Rj —Ti is reconverted to a claim edge Ti —Rj. The request can be
granted only if converting the request edge Ti — Rj to an assignment edge Rj — Ti
does not result in the formation of a cycle in the resource-allocation graph.
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Figure 2 Resource-allocation graph for deadlock avoidance
R

R
Figure 3 An unsafe state in a resource-allocation graph.

Banker’s Algorithm

The resource-allocation-graph algorithm is not applicable to a resource allocation

system with multiple instances of each resource type. Several data structures must

be maintained to implement the banker’s algorithm.

We need the following data structures, where n is the number of threads in the system

and m is the number of resource types:

25 50 3l gall anadd el e o ) sall auaddl resource-allocation graph e ) sa (ki ¥

Bankers I dail cliball JSbia (e el (anadd cang, 390 g g8 JSI 320 (Lualic) <O

s plaill & processes ) dae ga n Cua ¢ adull bl JSba ) dae ) Al #UsS algorithm
2l sall &1 53 sae sam

+ Available.Avector of length m indicates the number of available resources

of each type. If Available[j] equals k, then k instances of resource type Rj
are available.
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Max. An n x m matrix defines the maximum demand of each thread.
If Max[i][j] equals k, then thread Ti may request at most k instances of
resource type Rj.
. process JS! llall oY) aall s x m - 4 siias
« Allocation. An n x m matrix defines the number of resources of each type
currently allocated to each thread. If Allocation[i][j] equals k, then thread
Ti is currently allocated k instances of resource type Rj.
. process JS aadall & 43 S (e 2 )l gall 220 2023 X M A8 san
* Need. An n x m matrix indicates the remaining resource need of each
thread. If Need[i][j] equals k, then thread Ti may need k more instances of
resource type Rj to complete its task. Note that Need[i][j] equals Max([i][j]
— Allocation[i][j].
process JS1 g 53 JS (e 0 sall Lgiiall dalall Biin x m 4d gaiaa

a.Safety Algorithm

We can now present the algorithm for finding out whether or not a system is in a

safe state. This algorithm can be described as follows:

e Al sl o2 Ciuay Sy Y ol Al s 8 aUail) (S0 Le 48 el Ay ) & a0V (S
: il sl

1. Let Work and Finish be vectors of length m and n, respectively. Initialize

Work = Available and Finish[i] = false fori=0, 1, ..., n — 1.

2. Find an index i such that both

a. Finish[i] == false

b. Needi < Work

If no such i exists, go to step 4.

3. Work = Work + Allocationi

Finish[i] = true

Go to step 2.

4. If Finish[i] == true for all i, then the system is in a safe state.

b.Resource-Request Algorithm

Olel A giae SIS 5 oS5 o) Sy b)) CuilS 5 Lo sl dua j ) o3)) Ciiai ¢ Sl 2y
Let Requesti be the request vector for thread Ti. If Requesti [j] == k, then thread Ti
wants k instances of resource type Rj. When a request for resources is made by thread
Ti, the following actions are taken :
1. If Requesti < Needi, go to step 2. Otherwise, raise an error condition, since the

thread has exceeded its maximum claim.

2. If Requesti < Available, go to step 3. Otherwise, Ti must wait, since the resources
are not available.
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3. Have the system pretend to have allocated the requested resources to thread Ti by
modifying the state as follows:

Available = Available—Requesti

Allocationi = Allocationi + Requesti

Needi = Needi —Requesti

If the resulting resource-allocation state is safe, the transaction is completed, and
thread Ti is allocated its resources. However, if the new state is unsafe, then Ti must
wait for Requesti, and the old resource-allocation state is restored.

An lllustrative Example
To illustrate the use of the banker’s algorithm, consider a system with five threads
TO through T4 and three resource types A, B, and C. Resource type A has ten
Instances, resource type B has five instances, and resource type C has seven
instances. Suppose that the following snapshot represents the current state of the
system:
T4 A TO o« processes duwed 43 Llas & jldel 4 aua «Bankers algorithm alasiu) sua 63l
allaill M) sl e 4000 Adadll) G (a8 C 5 B s A 3l sall (e g )5 A3

s die
Allocation Max Available
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T, 010 793 232
Ty 200 322
T, 302 902
T, 211 237
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Suppose now that T1 request is Requestl = (1,0,2). To decide whether this request

can be immediately granted, we first check that Requestl < Available—that is, that

(1,0,2) <(3,3,2), which is true. We then pretend that this request has been fulfilled,

and we arrive at the following new state:

¢ sl e Gllal) 138 e (S IS 1Y) L 32531 2). <0« Request] = (158 T1 <l of oY) o )
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Allocation Need  Awvailable
ABC ABC ABC

Ty 010 743 230
T, 302 020
s 302 600
T 211 011
T 002 431

We must determine whether this new system state is safe. To do so, we execute our
safety algorithm to decide if we can immediately grant the request of thread T1 or to
postponed granting it. A request for (3,3,0) by T4 cannot be granted. Why? A request
for (0,2,0) by TO cannot be granted, even though the resources are available. Why?

sl safety algorithm i a & ¢ iy ALall Ll 238 3aaal) aUail) Al cul€ 13 Le sas o cany
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Deadlock Detection
If a system does not employ either a deadlock-prevention or a deadlock avoidance
algorithm, then a deadlock situation may occur. In this environment, the system
may provide:

An algorithm that examines the state of the system to determine whether a
deadlock has occurred

An algorithm to recover from the deadlock.

Next, we discuss algorithms pertain to systems with only a single instance of
each resource type, as well as to systems with several instances of each resource
type.
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1. Single Instance of Each Resource Type

If all resources have only a single instance, then we can define a deadlock
detection algorithm that uses a variant of the resource-allocation graph, called a
wait-for graph.

J Al e CalSl) dpa )l sa paa LiCad ¢ hadd aaly paie e (g giat 0 ) gall aiea S 1Y)
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'qz HB

(@)
Figure 1 (a) Resource-allocation graph. (b) Corresponding wait-for graph.

As Dbefore, a deadlock exists in the system if and only if the wait-for graph
contains a cycle. To detect deadlocks, the system needs to maintain the wait for
graph and periodically invoke an algorithm that searches for a cycle in the graph.
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2. Several Instances of a Resource Type

with multiple instances of each resource type, we turn to a deadlock detection

algorithm that is applicable to such a system. The algorithm employs several

time-varying data structures that are similar to those used in the banker’s

algorithm.

Y deadlock ) Uls e wiSI A ) )l & ) J85 ¢ )l gall e g 8 S e ealic B2 xa
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Allocation  Request  Awailable

ABC ABC ABC
Ty 010 000 000
T, 200 202
T, 303 000
T, 211 100
Ty 002 002

We claim that the system is not in a deadlocked state. Indeed, if we execute our
algorithm, we will find that the sequence <TO, T2, T3, T1, T4> results in
Finish[i] == true for all i.

Suppose now that thread T2 makes one additional request for an instance

of type C. The Request matrix is modified as follows:

OF 2 ¢ Uy sl e ) ) AN ki L 13 ¢ @850 5 deadlock Alla 3 qed oY) oLl
e =i <TO, T2, T3, T1, T4> Jaaliil)

Finish[i] == true for all i.
A e Jhaad sl ladie C gsill (4o peaial Gilia) Ul oy T2 process ) ol oY) ()
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ABC
T, 000
T; 202
T, 001
T, 100
Eg 002

We claim that the system is now deadlocked. Although we can reclaim the
resources held by thread TO, the number of available resources is not sufficient to
fulfill the requests of the other threads. Thus, a deadlock exists, consisting of
threads T1, T2, T3, and T4.
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Detection-Algorithm Usage

When to invoke the detection algorithm depends on two factors:

1. How often is a deadlock likely to occur?

2. How many threads will be affected by deadlock when it happens?

If deadlocks occur frequently, then the detection algorithm should be invoked
frequently. Deadlocks occur only when some thread makes a request that cannot
be granted immediately. In the extreme, then, we can invoke the deadlock
detection algorithm every time a request for allocation cannot be granted
iImmediately. Of course, invoking the deadlock-detection algorithm for every
resource request will incur considerable overhead in computation time. A less
expensive alternative is simply to invoke the algorithm at defined intervals—for
example, once per hour or whenever CPU utilization drops below 40 percent.
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Recovery from Deadlock
When a detection algorithm determines that a deadlock exists, then it can be
recovered manually or automatically. There are two options for breaking a
deadlock. One is simply to abort one or more threads to break the circular wait.
The other is to preempt some resources from one or more of the deadlocked
threads.
To eliminate deadlocks by aborting a process or thread, we use one of two
methods. In both methods, the system reclaims all resources allocated to the
terminated processes.
A el kA Sl G ol G oy 4l ) Said ¢ deadlock 2 s s CadSH A ) ) sa o Ledie
AV _L__5)3\.\3\ oY) sl processes ) )SS\ o aal g eledl e ddalun Laaaal deadlock
. deadlock Y clas Al processes ) (e ST 5 saa) 5 (e 3 ) sall (ans £ 51 5
LIS 8 ity sl (san) padie ¢ Cllee ALl o dulee ¢ledl 315k (e deadlock J e (aliill
Aggiial) cilleall Laadall 3 ) sall gpen allaill dpwiog ¢ (i
Ae Abort all deadlocked processes. This method clearly will break the deadlock
cycle, but at great expense. The deadlocked processes may have computed for a
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long time, and the results of these partial computations must be discarded and
probably will have to be recomputed later.
deadlock -/ U clay il processes -/ guan £lg-il o
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Be Abort one process at a time until the deadlock cycle is eliminated. This
method incurs considerable overhead, since after each process is aborted, a
deadlock-detection algorithm must be invoked to determine whether any
processes are still deadlocked.
Aborting a process may not be easy. If the process was in the midst of updating a
file, terminating it may leave that file in an incorrect state.
If the partial termination method is used, then we must determine which
deadlocked process (or processes) should be terminated.
We should abort those processes whose termination will incur the minimum cost.
Unfortunately, the term minimum cost is not a precise
one.
Gae 45,k oda K5 deadlock =/ 4ils (e paliilf aly fia § 0 JS A 50a)g Ll £lgei] o
13) Le waail deadlock J oo <aiSl dua ) ) sa eledin) caay ¢ Aalae JS eled) amy adf Cua ¢ 150
. deadlock J 2 J) 55 Y Shilee @l s
a5 ) Welgl) (a5 38 ¢ Cale duaad Caiatia 8 dolead) CllS 1Y) Slga dolanll olgdl (5S Y 8
cllead) (g s maat lide Cind ¢ A gall eledl) 38k alasiud 2513 Aaaaa je dlla b Cild)
o gl ALSH i Waeled) i A el elli oldl iy Waeled) iy deadlock ) cbas A
LAy oanaal K Y a8 Akl sy ) mlhias ¢ Lall
Many factors may affect which process is chosen, including:
1. What the priority of the process is
2. How long the process has computed and how much longer the process
will compute before completing its designated task
3. How many and what types of resources the process has used (for example,
whether the resources are simple to preempt)
4. How many more resources the process needs in order to complete
5. How many processes will need to be terminated.
Ay il ¢ process ) ) A Jal gall e paall fign o
Taleal) 35050 oa Lo ]
A gall daguall alai) I Led 25 28 B ) (e oS 5 4 gall (8 process Al Cuiad 8 C gl (e oS D
Ll
() sall &1 35 Jeuall (e S 13) Le ¢ JUiall Jaaas o) dlead) Lgiaraiind il 3 ) sall g1 530 5 2ac 3
LedlaSY dlanl) Lealiag Al 2 ) sall 22e 4
sled) ) it i) ileall e oS5
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Resource Preemption

To eliminate deadlocks using resource preemption, we successively preempt

some resources from processes and give these resources to other processes until

the deadlock cycle is broken.

Oe )l sall pany @150 Mgl Jeoa s ¢ 2l sall g1 55 alasiuly deadlocks ) e paliil
. deadlock V350 S &b a5 AT Cililaal 3 ) sall 038 mia 5 Cililaal)

If preemption is required to deal with deadlocks, then three issues need to be

addressed:

1.Selecting a victim,

It must be determined the order of preemption to minimize cost. Cost factors may

include such parameters as the number of resources a deadlocked process is

holding and the amount of time the process has thus far consumed.

2.Rollback. If we preempt a resource from a process, what should be done with

that process? Clearly, it cannot continue with its normal execution; it is missing

some needed resource. We must roll back the process to some safe state and

restart it from that state.

Since, in general, it is difficult to determine what a safe state is, the simplest

solution is a total rollback: abort the process and then restart it. Although it is

more effective to roll back the process only as far as necessary to break the

deadlock, this method requires the system to keep

more information about the state of all running processes.

3. Starvation. How do we ensure that starvation will not occur? That is, how can

we guarantee that resources will not always be preempted from the same process?

In a system where victim selection is based primarily on cost factors, it may

happen that the same process is always picked as a victim. As a result, this process

never completes its designated task, a starvation situation any practical system

must address. Clearly, we must ensure that a process can be picked as a victim

only a (small) finite number of times.

The most common solution is to include the number of rollbacks in the

cost factor.
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Threads and Concurrency
The process model introduced previously assumed that a process was an
executing program with a single thread of control. Virtually all modern
operating systems, however, provide features enabling a process to
contain multiple threads of control. Identifying opportunities for
parallelism through the use of threads is becoming increasingly important
for modern multicore systems that provide multiple CPUs.
oS Jlsa (53 (25 mali e B ke Alaall Of Waae 4 o5 (1) dalaal) 23 ai (s idy
o) sin) (e dglanll (R ol Jaa 86 Uy 5 Aoal) Jusedilll kel apan (8 ¢ lld pay 2al
I3 threads A1 aladiu) JMA e s ) sill aladinl (a 58 Ciaual a8l Boasie aSad Judl
Baaxie 43S ye dallae Cilas g 868 A 31 i) Badaie Aaal) AaaiDl 53y Yie dpar

A thread is a basic unit of CPU utilization;_it comprises a thread ID, a
program counter (PC), a register set, and a stack. It shares with other
threads belonging to the same process its code section, data section, and
other operating-system resources, such as open files and signals. A
traditional process has a single thread of control. If a process has multiple
threads of control, it can perform more than one task at a time. Figure 1
illustrates the difference between a traditional single-threaded process and
a multithreaded process.
A Cayre (el 55 ¢ 3538 pall Aallaall B2 5 aladin duulad 30a 5 o thread
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| stack | || stack ||| stack |
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thread——>
< <« thread
single-threaded process multithreaded process

Figure 1 Single-threaded and multithreaded processes
1. Motivation
Most software applications that run on modern computers and mobile
devices are multithreaded. An application typically is implemented as a
separate process with several threads of control. Below we highlight a few
examples of multithreaded applications:
* An application that creates photo thumbnails from a collection of images
may use a separate thread to generate a thumbnail from each separate
image.
« A web browser might have one thread to display images or text while
another thread retrieves data from the network.
» A word processor may have a thread for displaying graphics, another
thread for responding to keystrokes from the user, and a third thread for
performing spelling and grammar checking in the background.
a1
sadeia Aaall A ganall 336y yignalll 3 3¢l o Jard Al gl ) cilinlai alars
bopd (e 2l ae Aliabio AleaS gadail) 265 24 Wosale | (multithreaded) Zgsd/
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Applications can also be designed to leverage processing capabilities on
multicore systems. Such applications can perform several CPU-intensive
tasks in parallel across the multiple computing cores.
In certain situations, a single application may be required to perform
several similar tasks. For example, a busy web server may accept
thousands of client requests for web pages, images, sound, and so forth.
If the web server ran as a traditional single-threaded process, it would be
able to service only one client at a time, and a client might have to wait a
very long time for its request to be serviced.
Cua 5 gl Baaxie dakai¥) o dalleall clilSa) (e 3ol Cilinlaill avaad Wl (S
LeiSay A 3S yall dadlaall Bas o aladiins) A88S lgall (e danll ool Clipdail) s2a Jidl (Say
Baxediall A gall (550 e (5 ) 5ilb La gl
¢ JEA o Ao Alilas alga Bae elal aa) g adad (0 o glhaall () <5 38 ¢ Ame OIS A
13 elly N e g gaall s ) geall 5 gl Cilaiial fraedf cilulh e CBYY1 g adla Jidy 28
e 138 o Sand ¢ (single-threaded) L/ fula /4,008 LlaaS Jeny sl aala oS
dedd o s Sy gha G5 HURTY) ) Jaesd) jlacay 35 ¢ 5 pe JS 8 Jad aal 5 e da2a
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One solution is to have the server run as a single process that accepts
requests, then it creates a separate process to service that request. Problem
with this solution is that process creation is time consuming and resource
intensive. It is generally more efficient to use one process that contains
multiple threads. If the web-server process is multithreaded, the server
will create a separate thread that listens for client requests, then rather than
creating another process, the server creates a new thread to service the
request and resumes listening for additional requests. This is illustrated in

Figure 2.
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Figure 2 Multithreaded server architecture.

Y

Most operating system kernels are also typically multithreaded. As an
example, during system boot time on Linux systems, several kernel
threads are created. Each thread performs a specific task, such as
managing devices, memory management, or interrupt handling.
Many applications can also take advantage of multiple threads, including
basic sorting, trees, and graph algorithms. In addition, programmers who
must solve contemporary CPU-intensive problems in data mining,
graphics, and artificial intelligence can leverage the power of modern
multicore systems by designing solutions that run in parallel.
¢ JUall Jus =d (multithreaded) L seal) saaaia (5 5S5 L Sale Juandiil) aldai (5 g3 alana
kernel 3 (threads) s (e paal) L&) o ¢ Linux dedail o aUsill seai i g oL
Aadaliall dallea 5l 3 SIAN 3 5100 ol 3 36 5l Jia ¢ 3adna daga Lgia JS 523 S
) ol Gl 8 ey ¢ Baasiall Jo gald) (e Bl Wayl colipdaill e aaell (e LS
Ja Gsasty Gl Cpma el (S ¢ el ) &Sl Ald) s )l ilaa 3l 535 a3
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()L Jaad J gl arana’ JOA

2 Benefits
The benefits of multithreaded programming can be broken down into
four major categories:
1. Responsiveness. Multithreading an interactive application may
allow a program to continue running even if part of it is blocked
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or is performing a lengthy operation, thereby increasing
responsiveness to the user.
. Resource sharing. The benefit of sharing code and data is that
it allows an application to have several different threads of
activity within the same address space.
Economy. Allocating memory and resources for process
creation is costly. Because threads share the resources of the
process to which they belong, it is more economical to create
and context-switch threads. In general thread creation consumes
less time and memory than process creation. Additionally,
context switching is typically faster between threads than
between processes.
. Scalability. The benefits of multithreading can be even greater
in a multiprocessor architecture, where threads may be running
in parallel on different processing cores. A single-threaded
process can run on only one processor, regardless of how many
are available.
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Multicore Programming

Earlier in the history of computer design, single-CPU systems
evolved into multi-CPU systems. A later trend in system design is
to place multiple computing cores on a single processing chip where
each core appears as a separate CPU to the operating system. We
refer to such systems as multicore, and multithreaded
programming. Multithreaded programming provides a mechanism
for more efficient use of these multiple computing cores and
improved concurrency. On a system with multiple cores, however,
concurrency means that some threads can run in parallel because

the system can assign a separate thread to each core
3) g1l Baaxia daa
Bas) sl 4 38 jall Aadlaall 3o g Aakail @) ghai ¢y gaaaSll aganal fy ) (e (Gilas S5
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Types of Parallelism

In general, there are two types of parallelism: data parallelism and task parallelism.
Data parallelism focuses on distributing subsets of the same data across multiple
computing cores and performing the same operation on each core. Consider, for
example, summing the contents of an array of size N. On a single-core system, one
thread would simply sum the elements [0] . . . [N — 1]. On a dual-core system,
however, thread A, running on core 0, could sum the elements [0] . . . [N2 — 1] while
thread B, running on core 1, could sum the elements [N2] . . . [N — 1]. The two
threads would be running in parallel on separate computing cores. Task
parallelism involves distributing not data but tasks (threads) across multiple
computing cores. Each thread is performing a unique operation. Different threads
may be operating on the same data, or they may be operating on different data.
Consider again our example above. In contrast to that situation, an example of task
parallelism might involve two threads, each performing a unique statistical operation
on the array of elements. The threads again are operating in parallel on separate
computing cores, but each is performing a unique operation.
Task aeal s))s5is Data parallelism — <blall 555 )il (e Gle s dllia ¢ ale JS
Qs g5 e Ll (uds (e dae 8 e gane )5 e bl g5l S » parallelism
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Fundamentally, then, data parallelism involves the distribution of data across
multiple cores, and task parallelism involves the distribution of tasks across multiple
cores, as shown in Figure 1. However, data and task parallelism are not mutually
exclusive, and an application may in fact use a hybrid of these two strategies.
5 Gy algall (g 315y ¢ Batmtia (551 e Ll 5 58 Ll (5 3) 55 anay ¢ (3] ¢ uilnd JS
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Figure 1. Data and task parallesim

Multithreading Models
Support for threads may be provided either at the user level, for user threads, or
by the kernel, for kernel threads. User threads are supported above the kernel and
are managed without kernel support, whereas kernel threads are supported and
managed directly by the operating system. Virtually all contemporary operating
systems—including Windows, Linux, and mac OS— support kernel threads.
A sl Gk e sl ¢ user threads U ¢ axdiudl (s siue o W) thread U acall g a1 8
aedi s A ¢ kernel aed s )l a3 5 kernel &4 user threads ) e 23 kernel threads
st Ler - L85 jealaall il dadail ppas ae i Joanill) alas Aol 505 3l 1355 kernel threads
Kernel threads JIMac OS — s Linux s Windows <l
Ultimately, a relationship must exist between user threads and kernel threads. We
look at three common ways of establishing such a relationship: the many-to-one
model, the one-to-one model, and the many-to-many model.
Gk & e 5,k L3l kernel threads s user threads 31 ¢ 483ke aa 53 () cang ¢ el &
many-to- z3s«is the one-to-one z3sais Many-to-one z3sei A8kl oda Jie Gupnldl dails
many
1. Many-to-One Model
The many-to-one model (Figure 2) maps many user-level threads to one kernel
thread. Thread management is done by the thread library in user space, so it is
efficient. However, the entire process will block if a thread makes a blocking system
call. Also, because only one thread can access the kernel at a time, multiple threads
are unable to run in parallel on multicore systems.

64



sl kernel thread ) user threads 31 (e il ety (2 JSEN) many-to-one z3 s a s
B NPT &as. Alad 8 1M ¢ padtiall sl 8 threads J) 4iSa idau g1 thread 4 3, A3
mm g thread oY 15k 5 ybaall L alas slesivl ol jals thread ol 13) LelaSh doleall
bl e o)l @l Jaall Je 3 )08y 3205l threads ) g4 ¢ aalg g A3l ) Jsa gl

3 il Baaetia

Figure 2. Many to one model
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2. One-to-One Model
The one-to-one model (Figure 3) maps each user thread to a kernel thread. It provides
more concurrency than the many-to-one model by allowing another thread to run
when a thread makes a blocking system call. It also allows multiple threads to run in
parallel on multiprocessors. The only drawback to this model is that creating a user
thread requires creating the corresponding kernel thread, and a large number of
kernel threads may burden the performance of a system.
Ul 35z saill Jd s kernel thread ) user thread JS ousis (3 JS&l) one-to-one g3 seill a s
¢) b thread asé Lexie Joandily JAT thread - zlewd) I35 e many-to-one zdsei (o S|
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DS aaall J8 38 5 ¢ Jisal kernel thread «Lis) ki user thread sL) ol s 73 saill 13¢) a5l
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Figure 3. One to one model

3. Many-to-Many Model
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The many-to-many model (Figure 4) multiplexes many user-level threads to a
smaller or equal number of kernel threads.
Figure 4. Many to many model
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One variation on the many-to-many model still multiplexes many user level threads
to a smaller or equal number of kernel threads but also allows a user-level thread to

user threads
S ; S ; § | user
S S S 5 S |
T I
///T\ |
'3 <
¢ 4 ¢ ¢ |kernel
- > p)
¢ ¢ ¢ ¢ | space
kernel threads

be bound to a kernel thread. This variation is sometimes referred to as the two-level
model (Figure 5).
Figure 5. Two level model
s ) user-level threads oo waadl Jl)) 23 e a8 many-to-many zase o= s JS3
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Memory Management

Introduction
Memory consists of a large array of bytes, each with its own address. The
CPU fetches instructions from memory according to the value of the
program counter. Main memory and the registers built into each
processing core are the only general-purpose storage that the CPU can
access directly. Therefore, any instructions in execution, and any data
being used by the instructions, must be in one of these direct-access
storage devices. If the data are not in memory; they must be moved there
before the CPU can operate on them.
Aallaall 3an g o 85 (aladl Ll sie Leie JSI g ¢ LN (0 B S Ao sana (e B_SIANN () 5SS
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To lessen the frequency of accessing the memory and the time needed to
access it, fast memory between the CPU and main memory called cache
is added on the CPU chip. For proper system operation, the operating
system must be protected from access by user processes, as well as protect
user processes from one another. Hardware implements this protection in
several ways. Here, we outline one possible implementation.
Protection can be provided by using two registers, usually a base and a
limit, as illustrated in Figure 1.
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Figure 1 A base and a limit register define a logical address space.

The base register holds the smallest legal physical memory address; the
limit register specifies the size of the range. Protection of memory space
is accomplished by having the CPU hardware compare every address
generated in user mode with the registers as illustrated in Figure 2.
axa limit 3 Jaos 23y ¢ process U x5 813 ) sie jeal e base I da s sin
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Figure 2 Hardware address protection with base and limit registers.
2 Address Binding
Most systems allow a user process to reside in any part of the physical
memory. Thus, although the address space of the computer may start at
00000, the first address of the user process need not be 00000.
Addresses in the source program are generally symbolic (such as the
variable count). A compiler typically binds these symbolic addresses to
relocatable addresses (such as “14 bytes from the beginning of this
module”). The linker or loader in turn binds the relocatable addresses to
absolute addresses (such as 74014). Each binding is a mapping from one
address space to another. Classically, the binding of instructions and data
to memory addresses can be done at any step along the way (figure 3):
‘ QFJCJQ} At Y3 S e e L;i = el ea';l.ml\ process Jadaiy) elau s
Y O sl 055 o aL Y ¢ 00000 xie 125 28 53 saaaSl () gie Aaliss o (ga a2 I e
00000 s ~23%uall process -

sty Lo Sale (@l paidl ane Jia) ple S5 & ey saaall malipll (8 gliall (5SS
relocatable ) lexa sa st sale Y AL () glially 45 3o )l gliall 038 Jay o yiall
(loader) desall sl linker Ll 1 a sy (Msas o)) 028 43lay e cily 14" Jin)(addresses
Ji) (absolute addresses) 4alkall 1 b1l relocatable addresses 2 ks o) s
OSay ¢ Badlss 5 Al ) (o)) sie Aalie (e ) sinll Jiia3 5asd s binding JS (74014

(3 JRall) Gkl Joha e 3 sha (5l 38 SINN (pgling il g <l Sl Jay
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e Compile time. If you know at compile time where the process will
reside in memory, then absolute code can be generated. For
example, if you know that a user process will reside starting at
location R, then the generated compiler code will start at that
location and extend up from there. If, at some later time, the starting
location changes, then it will be necessary to recompile this code.

source
program

compiler compile
time

object
other file
object
files 4 #

load
executable time
file

dynamicall -
linked ,L
libraries_~-.

” 7] execution
program time
in memory 1 (runtime)

Figure 3 Multistep processing of a user program.

L) Maie (Sad ¢ 3 SIA 28 process ) 4 aidie gl GlSall des il Cd g 4 Lle
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e Load time. If it is not known at compile time where the process will

reside in memory, then the compiler must generate relocatable code.

In this case, the final binding is delayed until load time. If the

starting address changes, we need only reload the user code to
incorporate this changed value.
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e Execution time. If the process can be moved during its execution from
one memory segment to another, then binding must be delayed until
run time. Special hardware must be available for this scheme to work.

¢ Al s SI akia e Lds oL process ) Ju (Saall e K13 2l c8 5 o
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3 Logical Versus Physical Address Space

An address generated by the CPU is commonly referred to as a logical

address, whereas an address seen by the memory unit that is, the one

loaded into the memory-address register of the memory is commonly

referred to as a physical address.

sihiall () sially 4 38 pall dallaall 3aa g Ao 50 05U Ay Al O siadl I L Le Bale

@A Ol siadl s 5 ¢ 3 SIAN Bas g o) 5 (oAl )il (M) L e (S ¢ (logical address)

physical b « 3 SIA (memory-address register) s_SIA (pgbie Ja A aliaas o
. address

logical physical
address address

physical
MMU memory

Y

CPU

Y

Figure 4 Memory management unit (MMU).

Binding addresses at either compile or load time generates identical
logical and physical addresses. However, the execution-time address-
binding scheme results in differing logical and physical addresses. In this
case, we usually refer to the logical address as a virtual address. The set
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of all logical addresses generated by a program is a logical address space.
The set of all physical addresses corresponding to these logical addresses
IS a physical address space. The run-time mapping from virtual to
physical addresses is done by a hardware device called the memory-
management unit (MMU) (Figure 4).
Aales logical 4Ashic goslie oL} Y daenill 5l paenill <y 8 cpgliall Jay ) (523
Apale 5 dalaia (g glie 20l CB 5 A () i) oy iy Lei ¢ Gl a5 Adillaie physical
virtual address =) @) () 5iaS Sl o) siall ) Bale jLiy ¢ Aad) oda 8 dalide
(ihaie () gic Aalise oAzl pall Aol g La 5LGS) 4 Al dglaiall o sliall aaes de gana
daalaiall oy oliall o2g ALNaal) Auladll gy Linl) ren de sana Wl (logical address space)
iy A slall Jdiad s o) (physical address space) 4dedll o)) giall dalie o
3as 5 e e 4l 5 2% ogical addresses ! virtual addresses (s 4l
4 JSEH (MMU) 5_81A0 5 )
We now have two different types of addresses: logical addresses (in the
range 0 to max) and physical addresses (in the range R + 0 to R + max for
a base value R). The user program generates only logical addresses and
thinks that the process runs in memory locations from 0 to max. However,
these logical addresses must be mapped to physical addresses before they
are used. The concept of a logical address space that is bound to a separate
physical address space is central to proper memory management (figure
5).

e 3l 2) logica addresses Akl (o ghiall o sliall e lilide Gle 58 GY) Ll
R + max I R + 0 gl 8) physical addresses 4=l ¢ sbiall 3 (max ) 0

dgleall ) i i) 5 Laid |ogical addresses sbish aaiiuall zali o sy (R Al Lagll
logical e i yuai iy ¢ b way aai¥) 2nd) ) 0 0 5SIAN a8l 0 & Jan
(5 Jsall) 3_SIAl ) J e 51 Lewalaaiinad 08 physical addresse 2! ) addresses
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Figure 5 Dynamic relocation using a relocation register.

4 Dynamic Loading
If the entire program and all data of a process are to be in physical memory
for the process to execute, then the size of a process has been limited to
the size of physical memory. To obtain better memory-space utilization,
we can use dynamic loading. With dynamic loading, a routine is not
loaded until it is called. The main program is loaded into memory and is
executed. When a routine needs to call another routine, the calling routine
first checks to see whether the other routine has been loaded. If it has not,
then the desired routine is loaded into memory and the program’s address
tables are updated to reflect this change. Then control is passed to the
newly loaded routine.
385 JaY Al 5 SIA 8 53 53 50 process I by aaen s Al el ydl S 13
e Jsaslls physical memory JI ax~s process ) asa daaius lasied | Zolaall
& .(dynamic loading) Sl Jrasil) alasiiv) Wiay ¢ 3 K10 dalial Juadl alasiul
uju_um)ﬂ\cab).d\d.m;.\e.u cj\.cm\(u.\u_mu.ui)d.\meuy é.m\_uﬂ\d.m;.d\
‘){j\ ;Lcm‘){\uuj)duc );\ u.uj)d.cm\e.l\ uuj)chxumc 5.3.194.1?.1.1)5)5\33\
u)ﬂ:ml\uu_g)l\dm;.\e.um J&muﬂ.\eﬂdb JA‘)!\ C«\‘PY‘JMAJHMUIS‘J\\A@‘)MS
LA\?S;.J\ -)"-)A"("'uf‘" . ndll \MM@MJJ\UJJL\; d_g\d;a_uda.\e;.\jcﬁ\ﬂ\&
\4.13; ALA;J ?" Lgﬂ\ u.uj)l\
The advantage of dynamic loading is that a routine is loaded only when it
is needed. In such a situation, although the total program size may be
large, the portion that is used (and hence loaded) may be much smaller.
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Dynamic loading does not require special support from the operating
system.

Jie A ad) dalal) vie Jadd o5 1) Jaest oy 43l A& dynamic loading ) 8 s Jiads
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5 Dynamic Linking and Shared Libraries
Dynamically linked libraries (DLLs) are system libraries that are linked
to user programs when the programs are run (refer back to Figure 3). Some
operating systems support only static linking, in which system libraries
are treated like any other object module and are combined by the loader
into the binary program image. In dynamic linking, linking, rather than
loading, is postponed until execution time. Dynamic linking decreases the
size of an executable image and may save main memory. A second
advantage of DLLs is that these libraries can be shared among multiple
processes so that only one instance of the DLL is in main memory.
285 die addiuall el Lhay ) Al albas GliSa 4 (DLLS) USaelin ddagi el il
aiy il 5 ¢ Lt static linking 3 Jseiill dadail s ac i (3 JSEN aal ) el yall 022
loader ) ddausl 51 leaad 215 Al object module sl Jie aslaill cili€e g Jaladll 43
Jaanill e Dad Ll W) Jiali dynamic linking ) & sl . AU gl 5588
(o Dd e 285 dauill AL 5 ) geall ana e dynamic linking ) Jl&  dawl) <dy s
O LSl s AS HLie Sy 4dl & DLL ) Asll 5 el A 1) 5 SIAl dalis
At ) 3 SIAN & DLL (1 a8 3as) g 4aiis (5 585 Sy ¢ 3332 PrOCESSES
When a program references a routine that is in a dynamic library, the
loader locates the DLL, loading it into memory if necessary. It then adjusts
addresses that reference functions in the dynamic library to the location
in memory where the DLL is stored.
& 5e a7y Joader ) ash ¢ ASaaliny ASa (3 s 5 ) el aal ey Laxie
(& i gl ) 5l A gliadl asiay o gl o3 paY) a3 133SI A Lebiesd s « DLL
DLL. (a5 ol G S (8 0 g gal) 1 gall () ASalipal) 40l

Dynamically linked libraries can be extended to library updates (such as
bug fixes). In addition, a library may be replaced by a new version, and
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all programs that reference the library will automatically use the new
version.
Dynamic linking and shared libraries generally require help from the
operating system. If the processes in memory are protected from one
another, then the operating system is the only entity that can check to see
whether the needed routine is in another process’s memory space Or that
can allow multiple processes to access the same memory addresses.
Jlagind aby 28 ¢ @y ) ALYl (sUadl) cladla) Jia) cuaaill 4508 DDL ) i s
Llals paadl jlaal) AnSall ) s Al el ll ases p0diudi g ¢ aaa laaly 404l
shared libraries) < isdl il s (dynamic linking) oSsebiuall day Jli calbaty
Lamy (3 drana 3 SIA 8 processes J) <uilS 1) Julill ala e sacbual) dle S5
O sV OIS 13 Le Ayl (il 4ay (o3 dm gl LS g Jail s (b ¢ (e
J s sl processes sasl 7 lawdl i ol (5 520 process 5_SI3 dalue 813 s g0 o slladll
L 5_SI (i
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Contiguous Memory Allocation

The memory is usually divided into two partitions: one for the operating system and
one for the user processes. We usually want several user processes to reside in
memory at the same time. In contiguous memory allocation, each process is
contained in a single section of memory that is contiguous to the section containing
the next process.
) A5 o Bale iy aadiad) lled AV Juridil) pUail Laaaal s pand ) Sale 5 SIA andss
¢l sial o3 ¢ contiguous memory allocation & .85l uds (83 1A 8 aodiial) Slilee (1
AU process e s sing ) adadall ) slaa 3 SIAN (e adaia A process JS
Memory Protection
A process can be prevented from accessing memory that it does not own by
combining the idea of relocation register with the idea of limit register.
Because every address a CPU generates is checked against these registers, we can
protect the operating system and the other users’ programs and data from being
modified by this running process.

limit relocation
register register
logical physical
address yes address
no
trap: addressing error

Figure 1 Hardware support for relocation and limit registers.
relocation 3 S8 G aeadl A (e LSES Y Al 3 SIA ) J a5l (0 process 3 gie (S
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i) alas dlea (ay AL ¢ il 038 Jilie 4 oty 43S pall dadlaall Bas 5 4055 ) sie JS Y
Jadidll a8 process J) A (e daanill (e agiUila s AV (peddisall el s

2 Memory Allocation

One of the simplest methods of allocating memory is to assign processes to variably
sized partitions in memory, where each partition may contain exactly one process.
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In this variable partition scheme, the operating system keeps a table indicating

which parts of memory are available and which are occupied. Fig 2 depicts this

scheme.

¢ 5)SIAN & aaall Byt aludl & processes Jl pay A3 S Ganadd )k Lal gaa) Jiam

variable partition - aUas & Julall slai Ladiag Jascallizas) 5process (e aud JS (g ging 38 Cua
Jaladall 138 geay 2 JSEN A grdiall o) 3a Y 95 5 giall 3 SIAN o) al ) ey Jsass ¢ 138

high
memory 05 0S OS 0OS
process 5 process 5 process 5
process 9 process 9
process 8 | ) =
low
rienigry| PRS0 2 process 2 process 2 process 2

Figure 2 Variable partition.

As processes enter the system, the operating system allocates and loads it into
memory, where it can then compete for CPU time. When a process terminates, it
releases its memory, which the operating system may then provide to another
process. The memory blocks available comprise a set of holes of various sizes
scattered throughout memory. When a process arrives and needs memory, the
system searches the set for a hole that is large enough for this process. The first-fit,
best-fit, and worst-fi strategies are the ones most commonly used to select a free hole
from the set of available holes.
LS dun clead Leliaati g Ll 3 K1Y anaddy Juddll aUas o 66 ¢ JUail) ) processes <) Jasi Laie
s Lgi I3 ) ai Leld ¢ Le process (e Ledie 4y 38 jall dallaall sas g iy o udliil) @l 2y
) gadll (o de gana (o Aaliall 3 SIA labise () 585 5 A1 process J elld asy Jaaill oUsila 3 4 8
Cainy ¢ 5,81 )zl 5 La process Juai Leaie 5,811 elasl aan 85 piiall dalisall laaly) <l
Gladia) Y el iy ¢ .process ) edgd (8K Lay 35S 5 gad e G gadll de gana A olail)
. worst-fit 5« best-fit «first-fit & aliall @l sadll de gana (103 ya 5 5ad sl
o First fit. Allocate the first hole that is big enough.
e Best fit. Allocate the smallest hole that is big enough. This strategy produces
the smallest leftover hole.
e Worst fit. Allocate the largest hole. This strategy produces the largest leftover
hole.
Process J) claiudiSy Lo 3 sl (A g¥1 8 paill janadled ol First fit o
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Simulations have shown that both first fit and best fit are better than worst fit in

terms of decreasing time and storage utilization. Neither first fit nor best fit is clearly

better than the other in terms of storage utilization, but first fit is generally faster.

< gll Wl s e worst fit (e dazadl best fit s first fit e SIS o sWlal) Cldae @ ekl

Cua e s AV e dliail hest fit ) Y s first fit I e S Gad 40 a1 (e 33300 aladind
o gee &l o sSEfirst fit 3 oSy ¢ o Al aladial

3 Fragmentation
A: External fragmentation
Both the first-fit and best-fit strategies for memory allocation suffer from external
fragmentation. The free memory space is broken into little pieces as processes are
loaded and removed from memory. External fragmentation exists when there is
enough total memory space to satisfy a request but the available spaces are not
contiguous.
B: Internal fragmentation
Memory fragmentation can be internal. Consider a hole of 18,464 bytes. Suppose
that the next process requests 18,462 bytes. If the requested block is allocated
exactly, a hole of 2 bytes will be left. The difference between these two numbers is
internal fragmentation —unused memory that is internal to a partition.
One solution to the problem of external fragmentation is compaction. The
goal is to shuffle the memory contents so as to place all free memory together in one
large block. Compaction is not always possible, however.
452113
Joa Al 3 el )
Jresd ) Aaa LAY 25 52l (e 3 SIAN anaddl pest fit s first fit ) sl jiul (e S (Alad
Ladl) an i bosea ol al ) AMAN 3 SIA dalie apudi 8 candy 5 SIAN Ga Ll 3]y clilasl)
B skaie Cad 38 Clalisall (S5 callall Lt S Allaa ) SIAN Cilalisa g gana ) 5 Lodic da A
adaall 48 3l
Aul ddeal) G (i 81 il 18464 Wialoe i 5 gad (= i) Gl 3 SIN A5 5a3 5% o (S
b 2 aama B s daluse & i ot ¢ lapally 4 sllhaal) dalisall Gauadd 2513 cul 18462 allh
ool AR Aadiiinn e 5803 - AN 0 el ga el (i G G5l
o Cuny 5 SIAN il gine Jeay 58 cangll Aua LAY 46 jadl) AGD Jglall aal compaction ) ixy
Lails BSas (pal compaction 31 Gl ¢ Gl aa s 350 saal 5 A d e 400 3 SIAN S aua
Paging
Paging is a memory management scheme that permits a process’s physical address
space to be noncontiguous. Paging avoids external fragmentation and the associated
need for compaction. Paging in its various forms is used in most operating systems.
Paging is implemented through cooperation between the operating system and the
computer hardware (figure 3).
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1 Basic Method
The basic method for implementing paging involves breaking physical memory into
fixed-sized blocks called frames and breaking logical memory into blocks of the
same size called pages. When a process is to be executed, its pages are loaded into
any available memory frames from their source. The logical address space is now
totally separate from the physical address space, so a process can have a logical 64-
bit address space even though the system has less than 264 bytes of physical
memory.
Every address generated by the CPU is divided into two parts: a page number (p)
and a page offset (d):

page number page offset
| P d

frame e

. logical address physical address 0x000
d
I 3
I- - f
cPU —)LTJ d—| [ T4 frame

— Oxfff

—> f — frame g

physical memory

page table

Figure 3 Paging hardware.
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The page number is used as an index into a per-process page table (figure 4). The

size of a page is a power of 2, typically varying between 4 KB and 1 GB per page,
depending on the computer architecture Figure 5,6).

sile dadall aaa (4 JSAN) process JSi =lall page table ) (8 s edS Assiall & ) aladiul o4
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page number page offset
p d
m-n n
frame
number
page 0 0
page 1 1| page 0
page 2 2
page 3 page table 3| page 2
memory
5
6
7| page 3
physical
memaory

Figure 4 Paging model of logical and physical memory.
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Figure 5 Paging example for a 32-byte memory with 4-byte pages.

An important aspect of paging is the clear separation between the programmer’s

view of memory and the actual physical memory. The programmer views memory

as one single space, containing only this one program. In fact, the user program is

scattered throughout physical memory, which also holds other programs.
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19 0 19
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3
21 new-process page table 21

(a) (b)
Figure 6 Free frames (a) before allocation and (b) after allocation.

Allocation details of physical memory are kept in a single, system-wide data
structure called a frame table. It contains information such as, which frames are
allocated, which frames are available, how many total frames there are, and so on.
The frame table has one entry for each physical page frame, indicating whether the
latter is free or allocated and, if it is allocated, to which page of which process (or
processes). The operating system maintains a copy of the page table for each process.
frame o o) (5 sl (o sl y liby JSa A 4 1) 3 SIAN Ganadd Jualds Blaayl
Al 2xe 5 ¢ Aalial frames dls ¢ anadd o3 Al frames J) ¢ Jis Slaslaa e o 5isy table
frame J< as) 5 Jas 5l slaw e frame table J s sisy @ld ) Lo ¢ 33 9 gall AdlaaY) frames
dadia (DM ¢ diapadi Zf 35 ¢ Lacada ol WA AW 138 S 13 Lo ) ey ¢ Ayl 5 SIAN
Al JS cladiall Jgan (e Aoy Qo) oUas Jading (lilee f) dlee (5l (1
3 Protection
Memory protection in a paged environment is accomplished by protection bits
associated with each frame. Normally, these bits are kept in the page table. One bit
can define a page to be read—write or read-only.
One additional bit is generally attached to each entry in the page table: a
valid —invalid bit. When this bit is set to valid, the associated page is in the process’s
logical address space a legal (or valid) page. When the bit is set to invalid, the page
is not in the process’s logical address space.
sale frame JS Adasi yall Lleal) iy 53 5l e pages () devdall 2anll 85 SIA Alea (338a3 o
Aasa el jall of U 5 3ol dndia aaay o) (e 2a)5 S page table ) 2 i) o ) oS3
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Figure 9.13 Valid (v) or invalid (i) bit in a page table.

Rarely does a process use all its address range. It would be wasteful in these cases
to create a page table with entries for every page in the address range. Some systems
provide hardware, in the form of a page-table length register (PTLR), to indicate
the size of the page table. This value is checked against every logical address to
verify that the address is in the valid range for the process. Failure of this test causes
an error trap in the operating system.
<YL page table L) ¢ buall (e ¢ sSow ¥l o3 s Led slhie (3t IS dgleal) aading e ) 50l
page-table length register (& 4uis xSl 5 jils L) Gamy a5 ) siall GBlai (& daiia (K
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Contiguous Memory Allocation

The memory is usually divided into two partitions: one for the operating system and
one for the user processes. We usually want several user processes to reside in
memory at the same time. In contiguous memory allocation, each process is
contained in a single section of memory that is contiguous to the section containing
the next process.
) A5 o Bale iy aadiad) lled AV Juridil) pUail Laaaal s pand ) Sale 5 SIA andss
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Memory Protection
A process can be prevented from accessing memory that it does not own by
combining the idea of relocation register with the idea of limit register.
Because every address a CPU generates is checked against these registers, we can
protect the operating system and the other users’ programs and data from being
modified by this running process.

limit relocation
register register
logical physical
address yes address
no
trap: addressing error

Figure 1 Hardware support for relocation and limit registers.
relocation 4588 aeadl IS (e LSS Y (Sl 8 SN ) J a1l (0 process ) gie (S
. limit register 11 5S4 »« register
el alas dlas Ky SUAT ¢ i aiall 03 Jilie s oy 4 3 pall Aallaall 30m 5 40555 ol sie IS Y
Jue&il) ad process JV A e il (e agililn s o AY) Cpeadiival) el

2 Memory Allocation

One of the simplest methods of allocating memory is to assign processes to variably
sized partitions in memory, where each partition may contain exactly one process.
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In this variable partition scheme, the operating system keeps a table indicating

which parts of memory are available and which are occupied. Fig 2 depicts this

scheme.
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Figure 2 Variable partition.

As processes enter the system, the operating system allocates and loads it into
memory, where it can then compete for CPU time. When a process terminates, it
releases its memory, which the operating system may then provide to another
process. The memory blocks available comprise a set of holes of various sizes
scattered throughout memory. When a process arrives and needs memory, the
system searches the set for a hole that is large enough for this process. The first-fit,
best-fit, and worst-fi strategies are the ones most commonly used to select a free hole
from the set of available holes.
LS dun clead Leliant g Led 3 81 anaddy Jundill aUai o g6 ¢ JUaill ) processes - Jassi Laie
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o First fit. Allocate the first hole that is big enough.
e Best fit. Allocate the smallest hole that is big enough. This strategy produces
the smallest leftover hole.
e Worst fit. Allocate the largest hole. This strategy produces the largest leftover
hole.
Process J) calarin¥ S Ly 3 €l oW1 8 gl anadiled 2y First fit e
o2 i process Jl clagin¥ A La 3,08 5sad jral Ganadd led s Best fit. o
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Simulations have shown that both first fit and best fit are better than worst fit in

terms of decreasing time and storage utilization. Neither first fit nor best fit is clearly

better than the other in terms of storage utilization, but first fit is generally faster.

< gll Wl s e worst fit (e dazadl best fit s first fit e SIS o sWlal) Cldae @ ekl

Cua e s AV e dliail hest fit ) Y s first fit I e S Gad 40 a1 (e 33300 aladind
o gee &l o sSEfirst fit 3 oSy ¢ o Al aladial

3 Fragmentation
A: External fragmentation
Both the first-fit and best-fit strategies for memory allocation suffer from external
fragmentation. The free memory space is broken into little pieces as processes are
loaded and removed from memory. External fragmentation exists when there is
enough total memory space to satisfy a request but the available spaces are not
contiguous.
B: Internal fragmentation
Memory fragmentation can be internal. Consider a hole of 18,464 bytes. Suppose
that the next process requests 18,462 bytes. If the requested block is allocated
exactly, a hole of 2 bytes will be left. The difference between these two numbers is
internal fragmentation —unused memory that is internal to a partition.
One solution to the problem of external fragmentation is compaction. The
goal is to shuffle the memory contents so as to place all free memory together in one
large block. Compaction is not always possible, however.
452113
doa Al & anll )
Jaaad o)) Aaa JLAl) 25 52l (e 8 SN anaddl best fit s first fit 4 el jiul oo JS Al
Ladll a8 B ymaa ol ol ) AIAN 3 SIA dalie apudi b cany 5 SIAN Ga Ll 3) y clilasll
B skaie Cand 38 Clalisall (S5 callall Lt S Allaa ) s SIAN Cilalisa g gana & 5 Lodie G LA
Al 45 il o
Aul Lleall () (i g8 ol 18464 Leinluoa dlii 6 5ad (i yidl Glala 3 SIA 4530 ()6 o oS
b 2 aaan s dalie & Ji ot ¢ lanally 4 lhall Aaluadl Gauadd 2513l 18462 kb
POV P ESRP DREGNPRSTS S KD T EUR G PR Y TV 5 VKPP R |
A Cuny 3 SIA Gl gina Jum s ga cangd) daa LAY 4 i) Al I lal) aad compaction ) s
Ll BSaa compaction Jl ol ¢l &es BonS Basl as st e alad) s <Al U< s
Paging
Paging is a memory management scheme that permits a process’s physical address
space to be noncontiguous. Paging avoids external fragmentation and the associated
need for compaction. Paging in its various forms is used in most operating systems.
Paging is implemented through cooperation between the operating system and the
computer hardware (figure 3).
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paging

e 4leall physical address space osSs ob geems 381 3,)3Y sl (e 3 ke paging
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1 Basic Method
The basic method for implementing paging involves breaking physical memory into
fixed-sized blocks called frames and breaking logical memory into blocks of the
same size called pages. When a process is to be executed, its pages are loaded into
any available memory frames from their source. The logical address space is now
totally separate from the physical address space, so a process can have a logical 64-
bit address space even though the system has less than 264 bytes of physical
memory.
Every address generated by the CPU is divided into two parts: a page number (p)
and a page offset (d):

page number page offset
| P d

frame e

— logical address physical address 0x000
| —‘L : frame f
CPU —)LT; d | [£]d

|
A
— Oxfff

—> f — frame g

physical memory

page table

Figure 3 Paging hardware.
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The page number is used as an index into a per-process page table (figure 4). The

size of a page is a power of 2, typically varying between 4 KB and 1 GB per page,
depending on the computer architecture Figure 5,6).

sile dadall aaa (4 JSAN) process JSi =lall page table ) (8 s edS Assiall & ) aladiul o4
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page number page offset
p d
m—n n
frame
number
page 0 0
page 1 1| page 0
page 2 2
page 3 page table 3| page 2
]
5
6
7| page 3
physical
memaory

Figure 4 Paging model of logical and physical memory.
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Figure 5 Paging example for a 32-byte memory with 4-byte pages.

An important aspect of paging is the clear separation between the programmer’s
view of memory and the actual physical memory. The programmer views memory
as one single space, containing only this one program. In fact, the user program is
scattered throughout physical memory, which also holds other programs. ;
Al D 1 3 SIAN 5 5 HSIAL e juall 43y ) (0 el 1) il 2 paging A dagall il sl aal
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Figure 6 Free frames (a) before allocation and (b) after allocation.

Allocation details of physical memory are kept in a single, system-wide data
structure called a frame table. It contains information such as, which frames are
allocated, which frames are available, how many total frames there are, and so on.
The frame table has one entry for each physical page frame, indicating whether the
latter is free or allocated and, if it is allocated, to which page of which process (or
processes). The operating system maintains a copy of the page table for each process.
frame (oo pUail) (5 sise e aafy by JSa (8 4w )11 5 S (ayads Jualds LlaaY) o4
Al axe 5 ¢ daliall frames Vs ¢ lpanads &5 Sl frames ) ¢ Jie Slaslaa e 53y table
frame J<0 2l s das 5 s e frame table ) s sisg @lld ) los ¢ 33 9a sl Adlaa) frames
dadia (DM ¢ diapadi fi 35 ¢ Lacada ol WA AV 138 S 13 Lo ) ey ¢ A ,l1 5 SIAN
Al JS cladiall Jgan (e Aoy Qo) oUas Jading (lilee f) dlee (5l (1
3 Protection
Memory protection in a paged environment is accomplished by protection bits
associated with each frame. Normally, these bits are kept in the page table. One bit
can define a page to be read—write or read-only.
One additional bit is generally attached to each entry in the page table: a
valid —invalid bit. When this bit is set to valid, the associated page is in the
process’s logical address space a legal (or valid) page. When the bit is set to invalid,
the page is not in the process’s logical address space.
sale frame JSo Adasi yall dleall iy (33 )l (e pages ) Aendall Al (85 ,SIA dles (3a8a3 o
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Figure 9.13 Valid (v) or invalid (i) bit in a page table.

Rarely does a process use all its address range. It would be wasteful in these cases
to create a page table with entries for every page in the address range. Some systems
provide hardware, in the form of a page-table length register (PTLR), to
indicate the size of the page table. This value is checked against every logical address
to verify that the address is in the valid range for the process. Failure of this test
causes an error trap in the operating system.
<YL page table sLi) g lacall (e o sSon ¥l ol A5 Lol slie (glas JS dulaal) aad80s La ) 50l
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Consider a paging system of a page size of 4 bytes, with a physical address space of 1024 byte.
And with a logical address space of 64 bytes.

1.What is the page number and page offset of logical address
0?
2.What is the physical address of logical address 0? 3
3.What is the logical address corresponding to the physical B
address 27. 2
4.How many bits are needed to represent the logical address. ] L
5.How many bits are needed to represent the physical address. 1 p
6. Represent the logical address 18 in binary. ekl iy I8
7. Represent the physical address 13 in binary.
Sol:

1. page_number = logical_address Div page_size
=0 Divd=0

page_offset= logical address Mod page_size
=0 Mod 4 =0

—_l."——-i:?(ﬂ —-rnin_o om
[
@ s
|
—:r—-—-|

%T_'O:_:,.

pags table

[

[
=
oo U‘ﬂﬂ|

[
g

‘Tlﬁ—ﬂ)

28

2. physical_address = (frame_number* page_size) +
page_offset
=(5*4)+0=20.

3. frame_numbe r= physical address Div frame_size
=27 Div 4 =6
As we look for this frame number in the page table, we find it corresponds to page 1.
frame_offset = physical address Mod frame_size
= 27 Mod 4 = 3 (page_offset)
Logical address= (page_number* page_size) + page_offset
=(1*4)+3=7
4. Logical address space = 64 byte =2%byte
Number of bits in logical address = 6 bits
5. Physical address space= 1024 bytes=2'° Bytes
Number of bits in physical address = 10 bits
6.We represent the value 18 in binary
10010 and complete the number of bits to 6. So the final result will be 010010.
7. We represent the value 13 in binary:
1101 and complete the number of bits to 10. So the final result will be 0000001101
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